Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Yield improvement in maize through optimized application of nitrogen fertilizer under narrow-wide row intercropping is associated with source-flow-sink trade-offs

Liang Feng1*, Ruoxing Liao1*, Muhammad Umair Hassan2, Xin Liu1, Xinghao Chen1, Xuyang Zhao1, Xinhui Lei1, Tian Pu1, Yushan Wu1, Taiwen Yong1, Feng Yang1, Xiaochun Wang1#, Wenyu Yang1

1 College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/ Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China

2 Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China

 Highlights 

·Applying nitrogen at a rate of 300 kg ha-1 at the 20 cm sites on both sides of the wide row enhanced intercropped maize yield by optimizing the source-flow-sink relationship.

·Grain filling, root bleeding sap intensity, and soluble sugar content were the most influential factors in determining the intercropped maize yield.

·Application of nitrogen of 300 kg ha-1 at the 20 cm sites on both sides of the wide row is recommended as an optimal nitrogen management strategy for intercropped maize. 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

-宽行大豆玉米间作系统可以提高作物产量。特别是,源流库理论中玉米产量优势背后的机制尚不明确。优化氮肥施用策略对间作产量的影响仍需进一步研究。本研究揭示了宽行氮肥施用策略通过权衡源流关系提升间作玉米产量的机制。2023年至2024年间,在中国四川盆地典型的大豆玉米间作区进行了田间验。研究包括不同施氮位点:窄行(A1)、宽行玉米两侧距离植株10 cmA2)、20 cmA3)和30 cmA4不同氮量(N0, 0 kg ha-1;N1, 225 kg ha-1;N2, 300 kg ha-1;N3, 375 kg ha-1)。具体而言,与A1N2相比,优化施氮A3N2处理显著提升了叶片生物量(11.44 %)、净光合率(11.04 %)、SPAD13.24 %)、根伤流液强度(RBSI54.1 %)、维管束数量(VB7.0 %)、可溶性糖(SS12.6 %)和氨基酸(16.3 %),显然,A3N2还显著提升了根系形态和玉米产量(17.4 %)。结构方程模型结果显示,施氮位点和施氮量互作显著增加了维管束数量、可溶性糖和氨基酸量,进而提高了形态加速籽粒灌浆GF),并延长籽粒灌浆活跃期2 d,最终提高间作玉米产量。随机森林模型结果表明,GFRBSISS VB 等因素主要影响间作玉米产量。总,宽行玉米两侧20 cm施氮位点结合300 kg ha-1施氮量通过优化源流权衡关系实现间作玉米增产。这些发现丰富了带状间作玉米在优化氮肥施用条件下源流库理论知识。它为大规模生产中间作玉米的氮肥优化用提供了重要见解



Abstract  

Narrow-wide row soybean-maize intercropping systems can improve crop yield. Particularly, the mechanisms underlying the maize yield advantage associated with the source-flow-sink theory are unclear. Effect of optimized nitrogen (N) fertilizer application strategies on intercrops yield still needs to be further studied. This study revealed the mechanism of wide-row N application strategy to enhance the yield of intercropped maize through the trade-off relationship of source-flow-sink. Field experiments were conducted from 2023 to 2024, in a typical soybean maize intercropping region of the Sichuan Basin, China. The study was contained different fertilizer application sites: narrow rows (A1), wider row sites 10 cm (A2), 20 cm (A3) and 30 cm (A4) away from the maize plants, respectively, and different N rates (N0, 0 kg ha-1; N1, 225 kg ha-1; N2, 300 kg ha-1; N3, 375 kg ha-1). Specifically, compared to A1N2, optimized fertilization A3N2 treatments significantly enhanced the leaf biomass (11.44%), net photosynthetic rate (11.04%), SPAD (13.24%), root bleeding saps intensity (RBSI, 54.1%), number of vascular bundles (VB, 7.0%), soluble sugars (SS, 12.6%) and amino acids (16.3%), apparently, A3N2 also significantly enhanced the root morphology and maize yield (17.4%). Structural equation modeling showed that the N site and N rate interaction effect significantly increased the number of vascular bundles, soluble sugars and amino acids, which promoted root morphology, sped up grain filling (GF) and extended the active grain filling period by 2 d, ultimately leading to higher intercropped maize yields. Random forest modeling also revealed that factors such as GF, RBSI, SS and VB made a main contribution to the intercropped maize yield effect. Collectively, optimization of trade-offs in source-flow-sink relationships facilitates intercropped maize to achieve increased yield at 20 cm wide row distance with 300 kg ha-1 N application rates. These findings enriched the knowledge of source-flow-sink of strip intercropped maize under the condition of optimal N fertilizer application. It offers critical insights for the optimized application of N fertilizers in large-scale field production of strips intercropped maize.

Keywords:  nitrogen       maize       intercropping system       leaf traits       yield  
Online: 22 December 2025  
Fund: 

This study was supported by the Integrated Demonstration of Maize Soybean Large Area Yield Improvement Technology Model in Southwest Region, China (2024YFD2300402), the Annual Water and Fertilizer Efficient Utilization and Regulation Technology Research, China (2022YFD2300902-02), and the Key Cultivation Technology Innovation and Application of New Maize Varieties, China (2021YFYZ0005).

About author:  Liang Feng, E-mail: 996597837@qq.com; Ruoxing Liao, E-mail: 1164404538@qq.com; #Correspondence Xiaochun Wang, E-mail: xchwang@sicau.edu.cn * These authors contributed equally to this work.

Cite this article: 

Liang Feng, Ruoxing Liao, Muhammad Umair Hassan, Xin Liu, Xinghao Chen, Xuyang Zhao, Xinhui Lei, Tian Pu, Yushan Wu, Taiwen Yong, Feng Yang, Xiaochun Wang, Wenyu Yang. 2025. Yield improvement in maize through optimized application of nitrogen fertilizer under narrow-wide row intercropping is associated with source-flow-sink trade-offs. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.035

Bardgett R, Van der Putten W. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511.

Chen G P, Liu M, Zhao X Y, Bawa G, Liang B, Feng L, Pu T, Yong T W, Liu W G, Liu J, Du J B, Yang F, Wu Y S, Liu C Y, Wang X C, Yang W Y. 2023. Improved photosynthetic performance under unilateral weak light conditions in a wide–narrow-row intercropping system is associated with altered sugar transport. Journal of Experimental Botany, 75, 258-273.

Chen P, Xian G J, Pu T, Gong W Z, Li J Z, Yang F, Wang X C, Yong T W, Li Y Z, Yan Y H, Liu J, Yang W Y, Wu Y S. 2025. Soybean-maize intercropping combined with water management enhances leaf traits to obtain yield benefits in semi-arid regions. Field Crops Research, 327, 109869.

Chen X Y, Ren H, Zhang J W, Zhao B, Ren B Z, Wan Y S, Liu P. 2024. Deep phosphorus fertilizer placement increases maize productivity by improving root-shoot coordination and photosynthetic performance. Soil and Tillage Research, 235, 105915.

David R, Mark A S, Omar S, Ralph B. 2024. Structure, function, and assembly of PSI in thylakoid membranes of vascular plants. Plant Cell, 36, 4080-4108.

Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y. 2018. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture, 17, 747-754.

Feng L, Chen G P, Pu T, Liang B, Liu X, Wu Y S, Yong T W, Yang F, Wang X C, Yang W Y. 2024. Analyzing the stable yield mechanism of maize-soybean intercropping based on the perspective of assimilation product distribution, leaf photosynthetic physiology and leaf anatomical structure. Plant and Soil, 504, 367-384.

Gu Y R, Ibitoye R G, He J J, Gao F, Zhou X B. 2025. Photosynthetic performance and yield of intercropped maize and soybean are directly opposite under different intercropping ratios and maize planting densities interactions. Journal of the Science of Food and Agriculture, 105, 7440-7452.

Guan C L, Zhang D, Chu C C. 2025. Interplay of light and nitrogen for plant growth and development. The Crop Journal, 13, 641-655.

Huang Y R, Wang M Q, Wei L L, Zhao C J, Yang L, Zhou X B. 2025. Optimizing photosynthesis, resource use efficiency, and yield in maize-soybean intercropping through row configurations in Southwest China. Plant Biology, 27, 1202-1213.

Li Y L, Chen P, Fu Z D, Luo K, Lin P, Gao C, Liu S S, Pu T, Yong T W, Yang W Y. 2023. Maize-soybean relay cropping increases soybean yield synergistically by extending the post-anthesis leaf stay-green period and accelerating grain filling. The Crop Journal, 11, 1921-1930.

Liang B, Ma Y W, Shi K, Chen G P, Chen H, Hu Y, Chen P, Pu T, Wu Y S, Sun X, Yong T W, Liu W G, Liu J, Du J B, Yang F, Wang X C, Yang W Y. 2023. Appropriate bandwidth achieves a high yield by reducing maize intraspecific competition in additive maize–soybean strip intercropping. European Journal of Agronomy, 142, 126658.

Liao Z Q, Zhang C, Zhang Y, Yu S L, Yan S C, Zhang S H, Li Z J, Fan J L. 2024. Nitrogen application and soil mulching improve grain yield of rainfed maize by optimizing source-sink relationship and grain filling process on the Loess Plateau of China. European Journal of Agronomy, 153, 127060.

Liu C H, Pang S Y, Li X F, Liu P, Zhou Y, Lin X, Gu S B, Wang D. 2025. Layered nitrogen fertilization regulates root morphology to promote synergistic nitrogen and phosphorus absorption in maize (Zea mays L.). Field Crops Research, 322, 109737.

Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. 2022. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Research, 283, 108544.

Liu J, Yang W Y. 2024. Soybean maize strip intercropping: A solution for maintaining food security in China. Journal of Integrative Agriculture, 23, 2503-2506.

Mason T G, Maskell E J. 1928. Studies on the transport of carbohydrates in the cotton plant: II. the factors determining the rate and the direction of movement of sugars. Annals of Botany, 42, 571–636.

Nasar J, Zhao C J, Khan R, Gul H, Gitari H, Shao Z, Abbas G, Haider I, Iqbal Z, Ahmed W, Rehman R, Liang Q P, Zhou X B, Yang J. 2023. Maize-soybean intercropping at optimal N fertilization increases the N uptake, N yield and N use efficiency of maize crop by regulating the N assimilatory enzymes. Frontiers in Plant Science, 13, 1077948.

Ren H, Liu Z, Wang X B, Zhou W B, Zhou B Y, Zhao M, Li C F. 2025. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics. Journal of Integrative Agriculture, 24, 4195-4210.

Rodriguez C, Carlsson G, Englund J, Adam F, Pelzer E, Jeuffroy M, Makowski D, Jensen E S. 2020. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. European Journal of Agronomy, 118, 126077.

Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

Wu P, Chen G Z, Liu F, Cai T, Zhang P, Jia Z K. 2021. How does deep-band fertilizer placement reduce N2O emissions and increase maize yields? Agriculture, Ecosystems & Environment, 322, 107672.

Wu P, Liu F, Wang J Y, Liu Y H, Gao Y, Zhang X Q, Chen G Z, Huang F Y, Ahmad S, Zhang P, Cai T, Jia Z K. 2022. Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system. Agricultural Water Management, 271, 1077784.

Xiao T, Din A, Cui K S, Raza M A, Ali M F, Xiao J H. 2023. Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research, 291, 108793.

Yan Y Y, Duan F Y, Li X, Zhao R L, Hou P, Zhao M, Li S K, Wang Y H, Dai T B, Zhou W B. 2024. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiology, 195, 2652-2667.

Yang H, Su Y H, Wang L, Whalen J K, Pu T, Wang X C, Yang F, Yong T W, Liu J, Yan Y H, Yang W Y, Wu Y S. 2025. Strip intercropped maize with more light interception during post-silking promotes photosynthesized carbon sequestration in the soil. Agriculture Ecosystems & Environment, 378, 109301.

Yu R P, Yang H, Xing Y, Zhang W P, Lambers H, Li L. 2022. Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil, 476, 263-288.

Zeng H Q, Chen H Y, Zhang M X, Ding M, Xu F Y, Yan F, Toshinori K, Zhu Y Y. 2024. Plasma membrane H+-ATPases in mineral nutrition and crop improvement. Trends in Plant Science, 29, 978-994.

Zhai Z M, Shi W J, Liu L, Jing B. 2024. Effects of poly-γ-glutamic acid on soil pore structure, maize grain filling, yield and water use efficiency under mulched drip irrigation. Field Crops Research, 317, 109528.

Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Adnan A, Hao X Y, Sun M, Gao Z Q, Zhang L Z. 2020. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Research, 257, 107926.

Zhang Y, Sun Z X, Su Z C, Du G J, Bai W, Wang Q, Wang R N, Nie J Y, Sun T R, Feng C, Zhang Z, Yang N, Zhang X, Evers J, Wopke V, Zhang L Z. 2022. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Research, 282, 108523.

Zhao X Y, Hu Y, Liang B, Chen G P, Feng L, Pu T, Sun X, Yong T W, Liu W G, Liu J, Du J B, Yang F, Wang X C, Yang W Y. 2023. Coordination of density and nitrogen fertilization improves stalk lodging resistance of strip intercropped maize with soybeans by affecting stalk quality traits. Agriculture, 13, 13051009.

Zhu Y P, Wang S, Li Y H, Wei D, Luo N, Wang P, Meng Q F. 2023. Enhancing maize yield through understanding the novel shoot-root interaction in morphology among hybrids with dense planting. Field Crops Research, 302, 109107.

[1] Qinghao Wang, Juan Hu, Weizhen Yu, Limin Gu, Peng Liu, Bin Zhao, Wenchao Zhen, Jiwang Zhang, Baizhao Ren. Shading and waterlogging interactions exacerbate summer maize yield losses by reducing assimilate accumulation and remobilization processes[J]. >Journal of Integrative Agriculture, 2026, 25(1): 92-104.
[2] Zichen Liu, Liyan Shang, Shuaijun Dai, Jiayu Ye, Tian Sheng, Jun Deng, Ke Liu, Shah Fahad, Xiaohai Tian, Yunbo Zhang, Liying Huang. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice[J]. >Journal of Integrative Agriculture, 2026, 25(1): 81-91.
[3] Ziwen Shi, Sheng Zhang, Qing He, Xiaoyuan Wang, Bo yang, Tao Yu, Hongyang Yi, Tingzhao Rong, Moju Cao. ZmCals12 impacts maize growth and development by regulating symplastic transport[J]. >Journal of Integrative Agriculture, 2026, 25(1): 42-55.
[4] Shending Chen, Ahmed S. Elrys, Siwen Du, Wenyan Yang, Zucong Cai, Jinbo Zhang, Lei Meng, Christoph Müller. Soil nitrogen dynamics regulate differential nitrogen uptake between rice and upland crops[J]. >Journal of Integrative Agriculture, 2026, 25(1): 302-312.
[5] Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization[J]. >Journal of Integrative Agriculture, 2026, 25(1): 262-272.
[6] Xiaohui Xu, Qiang Chai, Falong Hu, Wen Yin, Zhilong Fan, Hanting Li, Zhipeng Liu, Qiming Wang. Intercropping grain crops with green manure under reduced chemical nitrogen improves the soil carbon stocks by optimizing aggregates in an oasis irrigation area[J]. >Journal of Integrative Agriculture, 2026, 25(1): 326-338.
[7] Ligong Peng, Sicheng Deng, Wentao Yi, Yizhu Wu, Yingying Zhang, Xiangbin Yao, Pipeng Xing, Baoling Cui, Xiangru Tang. Partial organic fertilizer substitution and water-saving irrigation can reduce greenhouse gas emissions in aromatic rice paddy by regulating soil microorganisms while increasing yield and aroma[J]. >Journal of Integrative Agriculture, 2026, 25(1): 273-289.
[8] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[9] Hanqiang Lü, Aizhong Yu, Qiang Chai, Feng Wang, Yulong Wang, Pengfei Wang, Yongpan Shang, Xuehui Yang. No-tillage with total green manure incorporation: A better strategy to higher maize yield and nitrogen uptake in arid irrigation areas[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3403-3417.
[10] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[11] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[12] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[13] Xiaoqing Wang, Wenjiao Shi, Qiangyi Yu, Xiangzheng Deng, Lijun Zuo, Xiaoli Shi, Minglei Wang, Jun Li. Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3264-3281.
[14] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2974-2988.
[15] Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3004-3023.
No Suggested Reading articles found!