Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 3264-3281    DOI: 10.1016/j.jia.2025.02.006
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China

Xiaoqing Wang1, 2, Wenjiao Shi1, 3#, Qiangyi Yu4, Xiangzheng Deng1, 3, Lijun Zuo5, Xiaoli Shi6, Minglei Wang1, 3, Jun Li1, 6

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
2 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
4 Key Laboratory of Agricultural Remote Sensing (AGRIRS), Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
5 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
6 Hebei Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Sciences/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Geocomputation and Planning Center, Hebei Normal University, Shijiazhuang 050024, China
 Highlights 
The nitrogen use efficiencies (NUEs) of the three main crops in the Huang-Huai-Hai Region (HHHR) are below 40%.  
Well-facilitated farmland can potentially reduce N losses and environmental impacts.
By reducing the N rate of high N input counties in the HHHR, the NUEs will increase by 12.9−19.5%.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

高标准农田建设是推动中国集约农田走向可持续发展的重要战略举措,在推动粮食增产方面发挥关键作用。然而,目前尚不清楚高标准农田是否有效提高氮肥利用效率以及能否缓解农业氮肥对环境的负面影响。鉴于此,本研究对中国粮食产区黄淮海地区(HHHR)建设的高标准农田项目区(WFFPs)进行大规模抽样调查,获取了502份有效问卷,涉及小麦(n=429)、玉米(n=328) 和水稻(n=122)三种主粮作物。基于多源数据和方法,研究量化了抽样WFFPs和县尺度平均水平之间氮利用效率(NUE)和氮损失的差距。结果表明,与县尺度平均水平相比(小麦: 39.1%; 玉米: 33.8%; 水稻: 35.1%)WFFPs管理下的小麦(55.2%)、玉米(52.1%)和水稻(50.2%)NUE提升显著(P<0.05)此外,WFFPs(NH3) 挥发(9.9-12.2 kg N ha-1)、氮淋溶(6.5-16.9 kg N ha-1)氧化亚氮(N2O)排放(1.2-1.6 kg N ha-1) 方面也均显著低于县尺度平均水平(P<0.05)通过情景假设,当对HHHR高氮投入分别减少101520%氮投入时小麦、玉米和水稻NUE可分别提高2.9-6.32.4-5.22.6-5.7%如果尺度投入量能够达到WFFPs水平,三种作物的NUE可提升12.9-19.5%,在氮淋溶(48.9-56.2%)NH3挥发(37.4-42.9%)N2O排放(46.0-66.5%)方面将产生不同程度的缓解研究揭示了高标准农田对未来农业氮肥管理的重要性,以及在缓解农业氮肥环境影响方面的巨大潜力。



Abstract  

The well-facilitated farmland projects (WFFPs) involve the typical sustainable intensification of farmland use and play a key role in raising food production in China.  However, whether such WFFPs can enhance the nitrogen (N) use efficiency and reduce environmental impacts is still unclear.  Here, we examined the data from 502 valid questionnaires collected from WFFPs in the major grain-producing area, the Huang-Huai-Hai Region (HHHR) in China, with 429 samples for wheat, 328 for maize, and 122 for rice.  We identified gaps in N use efficiency (NUE) and N losses from the production of the three crops between the sampled WFFPs and counties based on the statistical data.  The results showed that compared to the county-level (wheat, 39.1%; maize, 33.8%; rice, 35.1%), the NUEs for wheat (55.2%), maize (52.1%), and rice (50.2%) in the WFFPs were significantly improved (P<0.05).  In addition, the intensities of ammonia (NH3) volatilization (9.9−12.2 kg N ha–1), N leaching (6.5−16.9 kg N ha–1), and nitrous oxide (N2O) emissions (1.2−1.6 kg N ha–1) from crop production in the sampled WFFPs were significantly lower than the county averages (P<0.05).  Simulations showed that if the N rates are reduced by 10.0, 15.0, and 20.0% for the counties, the NUEs of wheat, maize, and rice in the HHHR will increase by 2.9−6.3, 2.4−5.2, and 2.6−5.7%, respectively.  If the N rate is reduced to the WFFP level in each county, the NUEs of the three crops will increase by 12.9−19.5%, and the N leaching, NH3, and N2O emissions will be reduced by 48.9−56.2, 37.4−42.9, and 46.0−66.5%, respectively.  Our findings highlight that efficient N management practices in sustainable intensive farmland have considerable potential for reducing environmental impacts.

Keywords:  Huang-Huai-Hai Region       well-facilitated farmland projects       nitrogen use efficiency       environmental impacts        gap quantification       scenario hypothesis  
Received: 14 September 2024   Online: 10 February 2025   Accepted: 18 December 2024
Fund: 

This research was supported by the National Key Research and Development Program of China (2022YFB3903505), and the National Natural Science Foundation of China (72221002).

About author:  Xiaoqing Wang, E-mail: wxq@lreis.ac.cn; #Correspondence Wenjiao Shi, E-mail: shiwj@lreis.ac.cn

Cite this article: 

Xiaoqing Wang, Wenjiao Shi, Qiangyi Yu, Xiangzheng Deng, Lijun Zuo, Xiaoli Shi, Minglei Wang, Jun Li. 2025. Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China. Journal of Integrative Agriculture, 24(8): 3264-3281.

Benjamin L B, Alexander P, Hermann L, Jan P D, Susanne R, Isabelle W, Christoph S, Christoph M, Markus B, Florian H, Anne B, Miodrag S. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications5, 3858.

Benyamin K, Shahin R, Pan J, Zhang Y T, Liu H B. 2020. A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate: A case study in North China Plain. Journal of Cleaner Production256, 120213.

Bohman B J, Rosen C J, Mulla D J. 2021. Relating nitrogen use efficiency to nitrogen nutrition index for evaluation of agronomic and environmental outcomes in potato. Field Crops Research262, 108041.

Bouwman A F, Lee D S, Asman W A H, Dentener F J, VanderHoek K W, Olivier J G J. 1997. A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles256, 120213.

Cai S Y, Zhao X, Liu X J, Yan X Y. 2023. Nitrogen management to minimize yield-scaled ammonia emission from paddy rice in the Middle and Lower Yangtze River Basin: A meta-analysis. Environmental Pollution318, 120854.

Chen X P, Cui Z L, Fan M S, Peter V, Zhao M, Ma WQ, Wang Z L, Zhang W J, Yan X Y, Yang J C, Deng X P, Gao Q, Zhang Q, Guo S W, Ren J, Li S Q, Ye Y L, Wang Z H, Huang J L, Tang Q Y, et al. 2014. Producing more grain with lower environmental costs. Nature514, 486–489.

Chen X P, Cui Z L, Peter M V, Kenneh G C, Pamela A M, Bai J S, Meng Q F, Hou P, Yue S C, Volker R, Zhang F S. 2011. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America108, 6399–6404.

Chen X X, Zhang W Z, Wang X Z, Liu YM, Yu B G, Chen X P, Zou C Q. 2021. Life cycle assessment of a long-term multifunctional winter wheat–summer maize rotation system on the North China Plain under sustainable P management. Science of the Total Environment783, 147039.

Christiaens M E R, Gildemyn S, Matassa S, Ysebaert T, Vrieze J D, Rabaey K. 2017. Electrochemical ammonia recovery from source-separated urine for microbial protein production. Environmental Science and Technology51, 13143–13150.

Conijn J G, Bindraban P S, Schröder J J, Jongschaap R E E. 2018. Can our global food system meet food demand within planetary boundaries? AgricultureEcosystems and Environment251, 244–256.

Ding Z J, Hu R, Cao Y X, Li J T, Xiao D K, Hou J, Wang X X. 2024. Integrated assessment of yield, nitrogen use efficiency and ecosystem economic benefits of use of controlled-release and common urea in ratoon rice production. Journal of Integrative Agriculture23, 3186–3199.

Elrys A S, Metwally M S, Raza S, Alnaimy M A, Shaheen S, Chen Z J, Zhou J B. 2020. How much nitrogen does Africa need to feed itself by 2050? Journal of Environmental Management268, 110488.

Gu B J, Ju X T, Chang J, Ge Y, Peter M V. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America112, 8792–8797.

Gu B J, Ju X T, Chang S X, Ge Y, Chang J. 2017. Nitrogen use efficiencies in Chinese agricultural systems and implications for food security and environmental protection. Regional Environmental Change17, 1217–1227.

Guha T, Gopal G, Mukherjee A, Kundu R. 2022. Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution. Environmental Pollution292, 118301.

Hao T X, Zhu Q C, Zeng M F, Shen J B, Shi X J, Liu X J, Zhang F S, Vries W D. 2020. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat–maize double cropping system. Journal of Environmental Management270, 110888.

Islam S, Zhang J J, Zhao Y, She M Y, Ma, W J. 2021. Genetic regulation of the traits contributing to wheat nitrogen use efficiency. Plant Science303, 110759.

Jeanette S, Chen W Q, Barbara W. 2019. Integrating multiple data sources for learning analytics - review of literature. Research and Practice in Technology Enhanced Learning, 14,11.

Jia Y L, Wang Q F, Zhu J X, Chen Z, He N P, Yu G R. 2019. A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996–2015). China Scientific Data4, 8–17. (in Chinese)

Jia Y L, Wang Q F, Zhu J X, Chen Z, He N P, Yu G R. 2021. A spatial and temporal dataset of atmospheric inorganic nitrogen dry deposition in China (2006–2015). China Scientific Data6, 213–221. (in Chinese)

Ju X T, Gu B J, Wu Y Y, Jame N G. 2016. Reducing China’s fertilizer use by increasing farm size. Global Environmental Change41, 26–32.

Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Peter C, Zhu Z L, Zhang F S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America106, 3041–3046.

Jules P, Tim G B, Zareen P B, Lynn V D, Cornelia B F, H Charles J G, Dave G, Sue H, Nic L, Carol M, Gary P, Vara P, John R, Johan R, Pete S, Peter T, Steve W. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability1, 441–446.

Kanter D R, Bell A R, Mcdermid S S. 2019. Precision agriculture for smallholder nitrogen management. One Earth1, 281–284.

Kelly N E, Guijarro S J, Zimmerman R. 2021. Anthropogenic nitrogen loading and risk of eutrophication in the coastal zone of Atlantic Canada. EstuarineCoastal and Shelf Science263, 107630.

Kong D L, Zhang X D, Yu Q D, Jin Y G, Jiang P K, Wu S, Liu S W, Zou J W. 2024. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms. Journal of Integrative Agriculture23, 3159–3173.

Kong X B, Lal R, Li B G, Liu H B, Li K J, Feng G L, Zhang Q P, Zhang B B. 2014. Fertilizer intensification and its impacts in China’s HHH Plains. Advances in Agronomy125, 135–169.

Li B W, Shen Y Q. 2021. Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China. Land Use Policy100, 105124.

Li H R, Mei X R, Nangia V, Guo R, Liu Y E, Hao W P, Wang J D. 2021. Effects of different nitrogen fertilizers on the yield, water- and nitrogen-use efficiencies of drip-fertigated wheat and maize in the North China Plain. Agricultural Water Management243, 106474.

Li M, Fu Q, Singh V P, Liu D, Li T X, Li J. 2020a. Sustainable management of land, water, and fertilizer for rice production considering footprint family assessment in a random environment. Journal of Cleaner Production258, 120785.

Li M, Fu Q, Singh V P, Liu D, Li T X, Zhou Y. 2020b. Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty. Agricultural Systems178, 102685.

Li W C, Zhai L M, Lei Q L, Wollheim W M, Liu J, Liu H B, Hu W L, Ren T Z, Wang H Y, Liu S. 2018. Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China. Science of the Total Environment642, 21–32.

Liu X, Li M, Guo P, Zhang Z X. 2019. Optimization of water and fertilizer coupling system based on rice grain quality. Agricultural Water Management221, 34–46.

Lyu X D, Wang T, Ma Z M, Zhao C Y, Siddique K H M, Ju X T. 2019. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system. Field Crops Research244, 107624.

Mueller N D, Gerber J S, Johnston M, Ray D K, Foley J A. 2012. Closing yield gaps through nutrient and water management. Nature490, 254–257.

NBSC (National Bureau of Statistics of China). 2016. China Rural Statistical Yearbook. China Statistics Press, Beijing. pp. 113–196. (in Chinese)

NBSC (National Bureau of Statistics of China). 2020. China Rural Statistical Yearbook. China Statistics Press, Beijing. pp. 149–155. (in Chinese)

Qian F K, Rattan L, Wang Q B. 2021. Land evaluation and site assessment for the basic farmland protection in Lingyuan County, Northeast China. Journal of Cleaner Production31, 128097.

Qiao J, Wang J, Zhao D, Zhou W, Graeme S, Yan T M, Liu D L. 2022. Optimizing N fertilizer rates sustained rice yields, improved N use efficiency, and decreased N losses via runoff from rice–wheat cropping systems. AgricultureEcosystems and Environment324, 107724.

Quan Z, Zhang X, Fang Y T, Eric A D. 2021. Different quantification approaches for nitrogen use efficiency lead to divergent estimates with varying advantages. Nature Food2, 241–245.

Ren H, Han K, Liu Y E, Zhao Y L, Zhang L H, He Q J, Li Z H, Liu P, Wang H Z, Zhang J W, Zhao B. 2020. Improving smallholder farmers’ maize yields and economic benefits under sustainable crop intensification in the North China Plain. Science of the Total Environment763, 143035.

Schwertman N C, Owens M A, Adnan R. 2004. A simple more general boxplot method for identifying outliers. Computational Statistics and Data Analysis, 47, 165–174.

Tan Y C, Xu C, Liu D X, Wu W L, Rattan L, Meng F Q. 2017. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Research205, 135–146.

Tian D, Zhang Y Y, Mu Y J, Zhou Y Z, Zhang C L, Liu J F. 2017. The effect of drip irrigation and drip fertigation on N2O and NO emissions, water saving and grain yields in a maize field in the North China Plain. Science of the Total Environment575, 87–96.

Wang H Y, Zhang Y T, Chen A Q, Liu H B, Zhai L M, Lei B K, Ren T Z. 2017. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Research207, 52–61.

Wang X Q, Shi W J, Sun X F, Wang M. 2018. Comprehensive benefit evaluation and regional differences of construction projects of well-facilitated farmland in Huang-Huai-Hai region. Transactions of the Chinese Society of Agricultural Engineering34, 238–248. (in Chinese)

Wang X Q, Shi W J, Sun X F, Wang M. 2020. Comprehensive benefits evaluation and its spatial simulation for well-facilitated farmland projects in the Huang-Huai-Hai Region of China. Land Degradation and Development31, 1837–1850.

Wu Y Y, Xi X C, Tang X, Luo, D M, Gu B J, Shu Kee Lam P M V, Chen D L. 2018. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences of the United States of America115, 7010–7015.

Xiang M T, Yu Q Y, Li Y, Shi Z, Wu W B. 2022. Increasing multiple cropping for land use intensification: The role of crop choice. Land Use Policy112, 105846.

Xu C, Han X, Ru S H, Laura C, Robert M, Wu D, Wu W L, Meng F M. 2019. Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. Geoderma341, 129–137.

Xu H, Huang X J, Zhong T Y, Chen, Z G, Yu J. 2014. Chinese land policies and farmers’ adoption of organic fertilizer for saline soils. Land Use Policy38, 541–549.

Yang F, Li R, Cui Y, Duan Y H. 2010. Utilization and development strategy of organic fertilizer resources in China. Soil and Fertilizer Sciences in China4, 77–82. (In Chinese)

Yin Y L, Zhao R F, Yang Y, Meng Q F, Ying H, Kenneth G C, Cong W F, Tian X S, He K, Wang Y C, Cui Z L, Chen X P, Zhang F S. 2021. A steady-state N balance approach for sustainable smallholder farming. Proceedings of the National Academy of Sciences of the United States of America118, e2106576118.

Zhang B B, Su S S, Duan C X, Feng H, Chau H W, He J Q, Li Y, Rober L H, Wu S F, Zou Y F. 2022. Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-year field experiment. Agricultural Water Management260, 107295.

Zhang D, Wang H Y, Pan J T, Luo J F, Jian L, Gu B J, Liu S, Zhai L M, Stuart L, Zhang Y T, Lei Q L, Wu S X, Pete S, Liu H B. 2018. Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture Ecosystems and Environment265, 8–14.

Zhang G, Sun B F, Zhao H, Wang X K, Zheng C Y, Xiong K N, Ouyang Z Y, Lu F, Yuan Y F. 2019. Estimation of greenhouse gas mitigation potential through optimized application of synthetic N, P and K fertilizer to major cereal crops: A case study from China. Journal of Cleaner Production237, 117650.

Zhang L, Yan C X, Guo Q, Zhang J B, Jorge R M. 2018. The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. International Journal of Low-carbon Technologies13, 338–352.

Zhang W, Cao G, Li X, Zhang H, Wang C, Liu Q, Chen X, Cui Z, Shen J, Jiang R. 2016. Closing yield gaps in China by empowering smallholder farmers. Nature537, 671.

Zhang X, Eric A D, Denise L M, Timothy D S, Patrice D, Shen Y. 2015. Managing nitrogen for sustainable development. Nature528, 51–59.

Zhang Y T, Wang H Y, Lei Q L, Luo J F, Stuart L, Zhang J Z, Zhai L M, Wu S X, Zhang J S, Liu X X, Ren T Z, Liu H B. 2018. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Science of the Total Environment, 618, 1173–1183.

Zhao C, Huang H, Qian Z H, Jiang H X, Liu G M, Xu K, Hu Y J, Dai Q G, Huo Z Y. 2021. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. Journal of Integrative Agriculture20, 1487–1502.

Zhao R F, Chen X P, Zhang F S, Zhang H L, Jackie S, Volker R. 2006. Fertilization and nitrogen balance in a wheat–maize rotation system in North China. Agronomy Journal98, 873–1171.

Zuo L J, Zhang Z X, Kimberly M C, Graham K M, Kate A, Liu Y C, Zhang W, Zhang H Y, Wu W B, Zhang X L, Wang X, Liu B, Yi L, Wen Q K, Liu F, Xu J Y, Hu S G, Sun F F, James S G, Paul C W. 2018. Progress towards sustainable intensification in China challenged by land-use change. Nature Sustainability1, 304–313.

No related articles found!
No Suggested Reading articles found!