Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization

1 Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2 Sanya Institute of China Agricultural University, Sanya 572025, China
3 College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
4 Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, China

 Highlights 

l Manure amendment, especially combined with inorganic fertilizer, increased soil N2O emissions.

l Increased N2O emissions resulted from alleviated acidification and enhanced gross N mineralization.

l Manure amendment favored N2O-producing over N2O-consuming denitrifiers.

Higher soil aggregate stability closely correlated with increased N2O emissions.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

长期施用有机肥能有效缓解土壤酸化,增加固碳潜力和养分有效性,提高农田土壤肥力水平。然而,有机肥长期施用对酸性土壤N2O排放的影响机制尚不清楚。基于此,本研究依托连续36年施肥处理(包含不施肥, CK; 常规施化肥, F; 2倍常规化肥用量, 2F; 单施有机肥, M; 化肥配施有机肥, FM)的酸性旱地红壤定位试验,研究不同施肥处理的土壤N2O排放特征及其与初级氮素矿化速率、初级硝化速率、硝化和反硝化功能微生物的关联性。与CK处理相比(1.34 μg N kg–1 d–1),施肥处理N2O排放平均增加了34倍,其中有机肥配施处理N2O排放(10.6–169 μg N kg–1 d–1)显著高于单施化肥处理(3.26–5.51 μg N kg–1 d–1)。有机肥施用引起的N2O排放增加强度与增加的土壤酸碱度、团聚体稳定性、底物有效性、氮素矿化速率和反硝化功能基因比值(nirK+nirS)/nosZ密切相关。这些研究结果表明有机肥施用通过缓解土壤酸化、增加底物有效性、改善土壤结构等方式,增强氮素矿化和反硝化介导的N2O产生过程,促进N2O排放。进一步研究发现,氨氧化细菌而非氨氧化古菌与土壤硝态氮含量和N2O排放显著正相关。这表明硝化过程通过为反硝化供应硝态氮,间接促进N2O产生和排放。总体而言,有机肥施用通过缓解土壤酸化、增加底物有效性等,增强氮素矿化和反硝化介导的N2O产生过程,提高N2O排放潜力。这些研究结果表明当我们通过施用有机肥等方式缓解土壤酸化和提升肥力水平时,应综合考虑有机肥施用引起的温室气体排放,实现农业绿色可持续生产。



Abstract  

Long-term manure application has the potential to alleviate soil acidification, and increase carbon sequestration and nutrient availability, thus improving cropland fertility. However, the mechanisms behind greenhouse gas N2O emissions from acidic soil mediated by long-term manure application remain poorly understood. Herein, we investigated N2O emission and its linkage with gross N mineralization and nitrification rates, as well as nitrifying and denitrifying microbes in an acidic upland soil subjected to 36-year fertilization treatments, including an unfertilized control (CK), inorganic fertilizer (F), 2 x rate of inorganic fertilizer (2F), manure (M), and the combination of inorganic fertilizer and manure (FM) treatments. Compared to the CK treatment (1.34 μg N kg1 d1), fertilization strongly increased N2O emissions by 34-fold on average, with more pronounced increases in the manure-amendment (10.6–169 μg N kg1 d1) than those in the inorganic fertilizer treatments (3.26–5.51 μg N kg1 d1). The manure amendment-stimulated N2O emissions were highly associated with increased soil pH, mean weight diameter of soil aggregates, substrate availability (e.g., particulate organic carbon, NO3 and available phosphorus), gross N mineralization rates, denitrifier abundances and the (nirK+nirS)/nosZ ratio. These findings suggest that the increased N2O emissions primarily resulted from alleviated acidification, increased substrate availability and improved soil structure, thus enhancing microbial N mineralization and favoring N2O-producing denitrifiers over N2O consumers. Moreover, AOB rather than AOA positively correlated with soil NO3 concentration and N2O emissions, indicating that nitrification indirectly contributed to N2O production by supplying NO3 for denitrification. Collectively, manure amendment potentially stimulates N2O emissions, primarily resulting from alleviated soil acidification and increased substrate availability, thus enhancing N mineralization and denitrifier-mediated N2O production. Our findings suggest that consideration should be given to the greenhouse gas budgets of agricultural ecosystems when applying manure for managing the pH and fertility of acidic soils.

Keywords:  long-term manure amendment        N2O emission       nitrogen mineralization       denitrification       (nirK+nirS)/nosZ  
Online: 18 April 2025  
Fund: 

This research was financially supported by the National Science & Technology Fundamental Resources Investigation Project of China (2021FY100501), and the Youth Innovation of Chinese Academy of Agricultural Sciences (Y2023QC16).

About author:  Lei Wu, Tel: +86-10-82108635, E-mail: wulei01@caas.cn; Correspondence Wenju Zhang, E-mail: zhangwenju01@caas.cn; Jing Hu, E-mail: hj18810756607@163.com

Cite this article: 

Lei Wu, Jing Hu, Muhammad Shaaban, Jun Wang, Kailou Liu, Minggang Xu, Wenju Zhang. 2025. Long-term manure amendment enhances N2O emissions from acidic soil by alleviating acidification and increasing nitrogen mineralization. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.022

Brookes P, Landman A, Pruden G, Jenkinson D. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842.

Butterbach-Bahl K, Baggs E M, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society, 368, 20130122.

Cheng Y, Zhang H, Chen Z, Wang J, Cai Z, Sun N, Wang S, Zhang J, Chang S X, Xu M, Cai Z, Müller C. 2021. Contrasting effects of different pH-raising materials on N2O emissions in acidic upland soils. European Journal of Soil Science, 72, 432-445.

Duan S, Feng G, Limpens E, Bonfante P, Xie X, Zhang L. 2024. Cross-kingdom nutrient exchange in the plant–arbuscular mycorrhizal fungus–bacterium continuum. Nature Reviews Microbiology, 22, 773-790.

Elliott E T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 50, 627-633.

Guenet B, Gabrielle B, Chenu C, Arrouays D, Balesdent J, Bernoux M, Bruni E, Caliman J P, Cardinael R, Chen S, Ciais P, Desbois D, Fouche J, Frank S, Henault C, Lugato E, Naipal V, Nesme T, Obersteiner M, Pellerin S, et al. 2021. Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology, 27, 237-256.

Hart S C, Nason G E, Myrold D D, Perry D A. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology, 75, 880-891.

Hayakawa A, Akiyama H, Sudo S, Yagi K. 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biology and Biochemistry, 41, 521-529.

He J Z, Hu H W, Zhang L M. 2012. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 55, 146-154.

Hu H W, Chen D, He J Z. 2015. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729-749.

IPCC (Intergovernmental Panel on Climate Change). 2021. Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Yelekçi W T O, Yu R, Zhou B, eds., Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Jahangir M M R, Khalil M I, Johnston P, Cardenas L M, Hatch D J, Butler M, Barrett M, O'Flaherty V, Richards K G. 2012. Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 147, 13-23.

Jiang M, Yang N, Zhao J, Shaaban M, Hu R. 2021. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions. Geoderma, 401, 115342.

Kong D, Zhang X, Yu Q, Jin Y, Jiang P, Wu S, Liu S, Zou J. 2024. Mitigation of N2O emissions in water-saving paddy fields: Evaluating organic fertilizer substitution and microbial mechanisms. Journal of Integrative Agriculture, 23, 3159-3173.

Li X, Sorensen P, Olesen J E, Petersen S O. 2016. Evidence for denitrification as main source of N2O emission from residue-amended soil. Soil Biology and Biochemistry, 92, 153-160.

Liang F, Guo Y, Liu A, Wang Y, Cao W, Song H, Li B, Chen J, Guo J. 2024. Is partial substitution of animal manure for synthetic fertilizer a viable N2O mitigation option? An integrative global meta-analysis. Field Crops Research, 318, 109574.

Liao X, Müller C, Sun H, Yuan J, Liu D, Chen Z, He T, Jansen-Willems A, Luo J, Ding W. 2024. Increases of N2O emissions due to enhanced nitrification in a sandy loam soil under long-term manure application. Biology and Fertility of Soils, 60, 1127-1141.

Lu R. 1999. Chemical Analysis of Agricultural Soil. China Agricultural Science and Technology Press, Beijing.

Maaz T M, Sapkota T B, Eagle A J, Kantar M B, Bruulsema T W, Majumdar K. 2021. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Global Change Biology, 27, 2343-2360.

Marx M C, Wood M, Jarvis S C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 33, 1633-1640.

Mehnaz K R, Dijkstra F A. 2016. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma , 284, 34-41.

Mehnaz K R, Keitel C, Dijkstra F A, 2018. Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biology and Fertility of Soils, 54, 481-493.

Murphy D V, Recous S, Stockdale E A, Fillery I R P, Jensen L S, Hatch D J, Goulding K W T. 2003. Gross nitrogen fluxes in soil: Theory, measurement and application of 15N pool dilution techniques. Advances in Agronomy, 79, 69-118.

Murphy J, Riley J P. 1962. Modified single solution method for the determination of phosphate in natural water. Analytica Chimica Acta, 27, 31-36.

Pan Y, Ni B, Bond P L, Ye L, Yuan Z. 2013. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Research, 47, 3273-3281.

Qu Z, Wang J G, Almøy T, Bakken L R. 2014. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Global Change Biology, 20, 1685-1698.

Raut N, Dörsch P, Sitaula B K, Bakken L R. 2012. Soil acidification by intensified crop production in South Asia results in higher N2O/(N2+N2O) product ratios of denitrification. Soil Biology and Biochemistry, 55, 104-112.

Ravishankara A, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123-125.

Senbayram M, Budai A, Bol R, Chadwick D, Marton L, Gündogan R, Wu D. 2019. Soil NO3 level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil. Soil Biology and Biochemistry, 132, 165-173.

Senbayram M, Wei Z, Wu D, Shan J, Yan X, Well R. 2022. Inhibitory effect of high nitrate on N2O reduction is offset by long moist spells in heavily N loaded arable soils. Biology and Fertility of Soils, 58, 77-90.

Tang Q, Moeskjær S, Cotton A, Dai W, Wang X, Yan X, Daniell T J. 2024. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. Science of the Total Environment, 946, 174178.

Tian H, Xu R, Canadell J G, Thompson R L, Winiwarter W, Suntharalingam P, Davidson E A, Ciais P, Jackson R B, Janssens-Maenhout G, Prather M J, Regnier P, Pan N, Pan S, Peters G P, Shi H, Tubiello F N, Zaehle S, Zhou F, Arneth Aet al. 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 586, 248-256.

Wan S, Lin Y, Fan J, Hu H W, Zhang J, Jin S S, Deng M, Müller C, He J Z. 2023. Different responses of nitrous oxide emissions to liming and manure amendment of an acidic ultisol are controlled by autotrophic and heterotrophic nitrification. Soil Biology and Biochemistry, 178, 108960.

Wang B, Brewer P E, Shugart H H, Lerdau M T, Allison S D. 2019. Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases—A concept. Global Change Biology, 25, 373-385.

Wang J, Wu L, Xiao Q, Huang Y, Liu K, Wu Y, Li D, Duan Y, Zhang W. 2023. Long-term manuring enhances soil gross nitrogen mineralization and ammonium immobilization in subtropical area. Agriculture, Ecosystems & Environment, 348, 108439.

Wei X, Hu Y, Peng P, Zhu Z, Atere C T, O’Donnell A G, Wu J, Ge T. 2017. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biology and Fertility of Soils, 53, 767-776.

Weier K L, Doran J W, Power J F, Walters D T. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 57, 66-72.

WRB (World Reference Base for Soil Resources). 2014. World Soil Resources Reports 106. Food and Agriculture Organization of the United Nations, Rome.

Wu G, Liang F, Wu Q, Feng X G, Shang W D, Li H W, Li X X, Che Z, Dong Z R, Song H. 2024. Soil pH differently affects N2O emissions from soils amended with chemical fertilizer and manure by modifying nitrification and denitrification in wheat-maize rotation system. Biology and Fertility of Soils, 60, 101-113.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biology and Biochemistry, 22, 1167-1169.

Wu L, Hu R G, Tang S R, Shaaban M, Zhang W J, Shen H P, Xu M G. 2020. Nitrous oxide emissions in response to straw incorporation is regulated by historical fertilization. Environmental Pollution, 266, 115292.

Wu L, Tang S R, He D D, Wu X, Shaaban M, Wang M L, Zhao J S, Khan I, Zheng X H, Hu R G. 2017. Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Science of the Total Environment, 583, 190-201.

Wu L, Tang S R, Hu R G, Wang J, Duan P P, Xu C, Zhang W J, Xu M G. 2023. Increased N2O emission due to paddy soil drainage is regulated by carbon and nitrogen availability. Geoderma, 432, 116422.

Wu L, Xiao Q, Wang J, Huang Y P, Wu D, Liu J, Wang B R, Zhang H M, Xu M G, Zhang W J. 2022. Liming decreases the emission and temperature sensitivity of N2O following labile carbon addition. Geoderma, 425, 116032.

Wu L, Zhang W J, Wei W J, He Z L, Kuzyakov Y, Bol R, Hu R G. 2019. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biology and Biochemistry, 135, 383-391.

Xu C, Zhu H, Wang J, Ji C, Liu Y, Chen D, Zhang H, Wang J, Zhang Y. 2023. Fertilizer N triggers native soil N-derived N2O emissions by priming gross N mineralization. Soil Biology and Biochemistry, 178, 108961.

Xu R, Tian H, Pan S, Prior S A, Feng Y, Dangal S R S. 2020. Global N2O emissions from cropland driven by nitrogen addition and environmental factors: Comparison and uncertainty analysis. Global Biogeochemical Cycles, 34, e2020GB006698.

Yu W, Huang W, Weintraub-Leff S R, Hall S J. 2022. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry, 172, 108756.

Zhang X, Fang Q, Zhang T, Ma W, Velthof G L, Hou Y, Oenema O, Zhang F. 2020. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Change Biology, 26, 888-900.

Zhang Y, Zhao J, Huang X, Cheng Y, Cai Z, Zhang J, Müller C. 2021. Microbial pathways account for the pH effect on soil N2O production. European Journal of Soil Biology, 106, 103337.

Zhou M, Zhu B, Wang S, Zhu X, Vereecken H, Brüggemann N. 2017. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Global Change Biology, 23, 4068-4083.

No related articles found!
No Suggested Reading articles found!