Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 3004-3023    DOI: 10.1016/j.jia.2025.02.027
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia

Siriyaporn Chanapanchai1, Wahdan Fitriya1, Ida Bagus Made Artadana1, Kanyaratt Supaibulwatana1, 2#

1 School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok 10400, Kingdom of Thailand

2 Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Kingdom of Thailand 

Highlights 

An Azolla-based model for sustainable crop production and enhancing agroecosystem services in Southeast Asia is demonstrated.

The identification of Azolla species and several aspects of their benefits in different localities were collected from existing reports. In addition, improving Azolla properties through genetic modification with recent advanced technology is illustrated.

Future trends of Azolla utilization for high-value products are discussed.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Global warming and climate change have made food production through conventional agriculture inefficient, and their effects on livestock and crop cultivation are leading to disruptions in the food supply.  The troubles are severe in regions suffering from improper land management and unsustainable practices.  The Bio-Circular-Green (BCG) economic model, designed to reduce and recycle resources by using environmentally friendly procedures, has been developed.  The Azolla plant represents an interesting model for BCG and for enhancing community networks in Southeast Asia (SEA) because it provides multipurpose materials.  Azolla can be used for various applications in agriculture such as biofertilizer and animal feed.  However, our understanding and utilization of Azolla are limited.  Moreover, collaboration among farmers is insufficient to maximize the benefits of Azolla.  In this study, we provide a comprehensive review of the role of Azolla in agriculture.  We review the main properties of Azolla as biofertilizers, especially regarding rice production and the interaction with cyanobacteria.  For livestock, we discuss procedures to use Azolla in animal feed and evaluate the ingredients of the meal.  In addition, we discuss product qualities from livestock treated with Azolla in the diet.  This review also describes Azolla-based farming, which is designed for efficient land use and promotes nutrient cycling.  Hence, we show that the Azolla plant is one of the key factors for farm-based agroecosystem services which can drive sustainable bioresource management in SEA.  Moreover, we also propose the potential development of Azolla to improve its properties as a biofertilizer, a functional feed for animals and humans, and a feedstock for bio-oil production.

Keywords:  Azolla       rice        nitrogen biofertilizer        livestock feed        sustainable farming        agroecosystem services  
Received: 02 October 2025   Online: 18 February 2025   Accepted: 17 January 2025
Fund: 

The authors would like to thank Mahidol University for the support of a “Scholarship for Ph D Student”, Thailand and the the cooperation with the National Science and Technology Development Agency and Mahidol University of “the Scholarship for the Development of High Quality Research Graduates in Science and Technology Project”, Thailand.  

About author:  Siriyaporn Chanapanchai, E-mail: siriyaporn.cha@gmail.com; #Correspondence Kanyaratt Supaibulwatana, E-mail: kanyaratt.sup@mahidol.ac.th

Cite this article: 

Siriyaporn Chanapanchai, Wahdan Fitriya, Ida Bagus Made Artadana, Kanyaratt Supaibulwatana. 2025. Important role and benefits of Azolla plants in the management of agroecosystem services, biodiversity, and sustainable rice production in Southeast Asia. Journal of Integrative Agriculture, 24(8): 3004-3023.

Abdelatty A M, Mandouh M I, Al-Mokaddem A K, Mansour H A, Khalil H M A, Elolimy A A, Ford H, Farid O A A, Prince A, Sakr O G, Aljuaydi S H, Bionaz M. 2020. Influence of level of inclusion of Azolla leaf meal on growth performance, meat quality and skeletal muscle p70S6 kinase α abundance in broiler chickens. Animal14, 2423–2432.

Adhikary B H, Vangnai S, Attanandana T, Swatdee P, Sripichitt P. 1997. Growth and nitrogen production rates of Azolla (Azolla microphylla) as affected by its cultivation methods: An economic perspective in rice cultivation in Thailand. Agriculture and Natural Resources31, 134–140.

Adhikary R, Shrestha R. 2018. Efficacy of Azolla pinnata in rice (Oryza sativa L.) production in Nepal. Advances in Research in Agricultural and Veterinary Sciences5, 4–6.

Agbagba G, Asuming-brempong S, Lawson I. 2018. Dried Azolla pinnata as a supplementary nitrogen source for lowland rice production in a Calcic Natraquert. Journal of Soil Science and Environmental Management9, 35–39.

Agnihotri P, Sikdar S, Maitra M, Choudhury S S, Mitra A K. 2022. Effect of combination of Azolla microphylla and As(V)-resistant bacterial consortium on growth, oxidative stress and arsenic accumulation in rice plant under As(V) stress. Vegetos35, 796–802.

Ahmad M I, Senusi W, Binhweel F, Alsaadi S. 2023. Optimization of base catalytic transesterification toward maximum biodiesel yield from Azolla filiculoides macroalgae feedstock. Industrial Crops and Products197, 116590.

Akhtar M S, Sarwar N, Ashraf A, Ejaz A, Ali S, Rizwan M. 2020. Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: Implications and future perspectives. Archives of Agronomy and Soil Science67, 1242–1255.

Akinbile C O, Ogunrinde T A, Che bt Man H, Aziz H A. 2016. Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnataInternational Journal of Phytoremediation18, 54–61.

Al-Baldawi I A, Yasin S R, Jasim S S, Abdullah S R S, Almansoory A F, Ismail N I. 2022. Removal of copper by Azolla filiculoides and Lemna minor: Phytoremediation potential, adsorption kinetics and isotherms. Heliyon8, e11456.

Al-Bdairi S, Kadhem J. 2021. The effect of biofertilizer of Azolla, phosphate and nitrogen fertilizers on yield and grain quality of rice. Al-Qadisiyah Journal for Agriculture Sciences11, 23–31.

Al-Huqail A A, Aref N M A, Khan F, Sobhy S E, Hafez E E, Khalifa A M, Saad-Allah K M. 2024. Azolla filiculoides extract improved salt tolerance in wheat (Triticum aestivum L.) is associated with prompting osmostasis, antioxidant potential and stress-interrelated genes. Scientific Reports14, 11100.

Alqaisi O, Ndambi O A, Williams R B. 2017. Time series livestock diet optimization: Cost-effective broiler feed substitution using the commodity price spread approach. Agricultural and Food Economics5, 25.

Al-Shwilly H A J. 2022. Azolla as a new dietary source in broiler feed: A physiological and production study. Archives of Razi Institute77, 2175–2180.

Amare E, Kebede F, Mulat W. 2018. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecological Engineering120, 464–473.

Anjana V N, Koshy E P, Mathew B. 2020. Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity. Materials Today (Proceedings), 25, 163–168.

Arora A, Saxena S. 2005. Cultivation of Azolla microphylla biomass on secondary-treated Delhi municipal effluents. Biomass and Bioenergy29, 60–64.

Baker E, Bezner Kerr R, Deryng D, Farrell A, Gurney-Smith H, Thornton P. 2023. Mixed farming systems: Potentials and barriers for climate change adaptation in food systems. Current Opinion in Environmental Sustainability62, 101270.

Banach A M, Kuźniar A, Grządziel J, Wolińska A. 2020. Azolla filiculoides L. as a source of metal-tolerant microorganisms. PLoS ONE15, e0232699.

Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J. 2004. The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere55, 141–146.

Beski S S M, Swick R A, Iji P A. 2015. Specialized protein products in broiler chicken nutrition: A review. Animal Nutrition1, 47–53.

Bharali A, Baruah K K, Bhattacharya S S, Kim K H. 2021. The use of Azolla caroliniana compost as organic input to irrigated and rainfed rice ecosystems: Comparison of its effects in relation to CH4 emission pattern, soil carbon storage, and grain C interactions. Journal of Cleaner Production313, 127931.

Bhardwaj A K, Rajwar D, Basak N, Bhardwaj N, Chaudhari S K, Bhaskar S, Sharma P C. 2020. Nitrogen mineralization and availability at critical stages of rice (Oryza sativa) crop, and its relation to soil biological activity and crop productivity under major nutrient management systems. Journal of Soil Science and Plant Nutrition20, 1238–1248.

Bhaskaran S K, Kannappan P. 2017. Protective effect of Azolla microphylla on biochemical, histopathological and molecular changes induced by isoproterenol in rats. Biomedicine & Pharmacotherapy89, 473–481.

Bhuvaneshwari K, Singh P K. 2015. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop. 3 Biotech5, 523–529.

Bianchi E, Biancalani A, Berardi C, Antal A, Fibbi D, Coppi A, Lastrucci L, Bussotti N, Colzi I, Renai L, Scordo C, Del Bubba M, Gonnelli C. 2020. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minutaScience of the Total Environment746, 141219.

Binti A N, Fui S C C, Mok S L. 2024. Effect of fresh Azolla (Azolla pinnata) on growth and yield of TR8 rice variety under reduced nitrogen rates. Journal of Agricultural Biotechnology15, 69–78.

Biswas M, Parveen S, Shimozawa H, Nakagoshi N. 2005. Effects of Azolla species on weed emergence in a rice paddy ecosystem. Weed Biology and Management5, 176–183.

Biswas S, Ganesan M. 2024. Evaluation of arsenic phytoremediation potential in Azolla filiculoides Lam. plants under low pH stress conditions. Plant Physiology and Biochemistry214, 108956.

Brilli F, Dani K G S, Pasqualini S, Costarelli A, Cannavò S, Paolocci F, Zittelli G C, Mugnai G, Baraldi R, Loreto F. 2022. Exposure to different light intensities affects emission of volatiles and accumulations of both pigments and phenolics in Azolla filiculoidesPhysiologia Plantarum174, e13619.

Brouwer P, Bräutigam A, Buijs V A, Tazelaar A O, van der Werf A, Schlüter U, Reichart G J, Bolger A, Usadel B, Weber A P, Schluepmann H. 2017. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by Nostoc azollae sustain the astonishing productivity of Azolla ferns without nitrogen fertilizer. Frontiers in Plant Science8, 442.

Brouwer P, van der Werf A, Schluepmann H, Reichart G J, Nierop K G J. 2016. Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. BioEnergy Research9, 369–377.

Brouwer P, Schluepmann H, Nierop K G, Elderson J, Bijl P K, van der Meer I, de Visser W, Reichart G J, Smeekens S, van der Werf A. 2018. Growing Azolla to produce sustainable protein feed: The effect of differing species and CO2 concentrations on biomass productivity and chemical composition. Journal of the Science of Food and Agriculture98, 4759–4768.

Burnat M, Li B, Kim S H, Michael A J, Flores E. 2018. Homospermidine biosynthesis in the cyanobacterium Anabaena requires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Molecular Microbiology109, 763–780.

Cagauan A G, Branckaert R D, Hove C. 2000. Integrating fish and Azolla into rice–duck farming in Asia. Naga the ICLARM Quarterly23, 4–10.

Chandio A A, Jiang Y, Ahmad F, Adhikari S, Ain Q U. 2021. Assessing the impacts of climatic and technological factors on rice production: Empirical evidence from Nepal. Technology in Society66, 101607.

Chekol S A, Nigussie T Z, Fenta B A. 2024. Azolla as a beneficial macrophyte for livestock feed: A review. Cogent Food & Agriculture10, 2367804.

Chen M, Deng S, Yang Y, Huang Y, Liu C. 2012. Efficacy of oxygen-supplying capacity of Azolla in a controlled life support system. Advances in Space Research49, 487–492.

Chung S, Takeuchi J, Fujihara M, Oeurng C. 2019. Flood damage assessment on rice crop in the Stung Sen River Basin of Cambodia. Paddy and Water Environment17, 255–263.

Crespo J L, Guerrero M G, Florencio F J. 1999. Mutational analysis of Asp51 of Anabaena azollae glutamine synthetase D51E mutation confers resistance to the active site inhibitors L-methionine-DL-sulfoximine and phosphinothricin. European Journal of Biochemistry266, 1202–1209.

Das M, Rahim F I, Hossain M A. 2018. Evaluation of fresh Azolla pinnata as a low-cost supplemental feed for Thai Silver Barb Barbonymus gonionotusFishes3, 15.

van Dijk M, Morley T, Rau M L, Saghai Y. 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food2, 494–501.

Dohaei M, Karimi K, Rahimmalek M, Satari B. 2020. Integrated biorefinery of aquatic fern Azolla filiculoides for enhanced extraction of phenolics, protein, and lipid and methane production from the residues. Journal of Cleaner Production276, 123175.

Donayre D K M, Tayson C E, Bello G E. 2022. Influence of Azolla on the survival of rice seedlings planted under varying invasive apple snail densities and water depths. Mindanao Journal of Science and Technology20, 23–37.

El-daim A, El Asely A, Kandiel M, Abd El-Gawad E, Elabd H, Shaheen A, Abbass A. 2021. Effect of Spirulina platensis and Azolla nilotica as feed additives on growth performance, antioxidant enzymes and fecundity of Oreochromis niloticusIranian Journal of Fisheries Sciences20, 846–862.

Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline–alkali stress. Frontiers in Plant Science12667458.

FAO. 2020. Rice–fish farming manual. Food and Agriculture Organization of the United Nation. [2024-9-15]. http://fishadapt.org/sites/default/files/pdf/resources/rice-fish%20manual.pdf

Fiogbé E D, Micha J C, Van Hove C. 2004. Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous-phytoplanktonophagous tilapia, Oreochromis niloticus L. Journal of Applied Ichthyology20, 517–520.

Forni C, Cascone A, Fiori M, Migliore L. 2002. Sulphadimethoxine and Azolla filiculoides Lam.: A model for drug remediation. Water Research36, 3398–3403.

Fosu-Mensah B, Vlek P, Manske G, Mensah M. 2015. The influence of Azolla pinnata on floodwater chemistry, grain yield and nitrogen uptake of rice in Dano, Southwestern Burkina Faso. Journal of Agricultural Science7, 118–130.

Franchini R, Seekman V. 2021. UNA-USA case competition: Resilient food system in Southeast Asia. [2024-9-14]. https://unausa.org/una-usa-case-competition-zero-hunger/

Gaur J P, Noraho N, Chauhan Y S. 1994. Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) schleid. and Azolla pinnata R. Br. Aquatic Botany49, 183–192.

Gholizadeh A M, Zarei M, Ebratkhahan M, Hasanzadeh A, Vafaei F. 2020. Removal of phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process. Journal of Environmental Management254, 109802.

Goala M, Yadav K K, Alam J, Adelodun B, Choi K S, Cabral-Pinto M M S, Hamid A A, Alhoshan M, Ali F A A, Shukla A K. 2021. Phytoremediation of dairy wastewater using Azolla pinnata: Application of image processing technique for leaflet growth simulation. Journal of Water Process Engineering42, 102152.

Guo X H, Lan Y C, Xu L Q, Yin D W, Li H Y, Qian Y D, Zheng G P, Lü Y D. 2021. Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields. Journal of Integrative Agriculture20, 540–553.

Hamdan H Z, Houri A F. 2022. CO2 sequestration by propagation of the fast-growing Azolla spp. Environmental Science and Pollution Research International29, 16912–16924.

Hassanein H A M, Maggiolino A, Abou El-Fadel M H, De Palo P, El-Sanafawy H A, Hussein A M, Salem A Z M. 2023. Inclusion of Azolla pinnata as an unconventional feed of Zaraibi dairy goats, and effects on milk production and offspring performance. Frontiers in Veterinary Science101101424.

Hazmi M, Waliyuddin H, Hasbi H. 2020. Ciherang rice agronomy performance on the balance of nitrogen intake from Azolla compost and urea. In: Proceedings of the 1st Borobudur International Symposium on Humanities, Economics and Social Sciences (BIS-HESS 2019) in Advances in Social ScienceEducation and Humanities Research. Atlantis Press, USA. pp. 192–195.

Hemalatha M, Sarkar O, Venkata Mohan S. 2019. Self-sustainable Azolla-biorefinery platform for valorization of biobased products with circular-cascading design. Chemical Engineering Journal373, 1042–1053.

Hemalatha M, Sravan J S, Min B, Venkata Mohan S. 2020. Concomitant use of Azolla derived bioelectrode as anode and hydrolysate as substrate for microbial fuel cell and electro-fermentation applications. Science of the Total Environment707, 135851.

Hoang H K, Meyers W H. 2015. Price stabilization and impacts of trade liberalization in the Southeast Asian rice market. Food Policy57, 26–39.

Hu L, Zhang J, Ren W, Guo L, Cheng Y, Li J, Li K, Zhu Z, Zhang J, Luo S, Cheng L, Tang J, Chen X. 2016. Can the co-cultivation of rice and fish help sustain rice production? Scientific Reports6, 28728.

Isti F, Cindy L, Afwun A. 2024. Analysis of rice trade and food security in Southeast Asian countries. KnE Social Sciences9, 641–653.

Kandel S, Malla R, Adhikary H, Vista S. 2020. Effect of Azolla application on rice production at mid-hills condition of Nepal. Tropical Agroecosystem1, 103–106.

Kannan T R, Selva Roji S S, Agnes A. 2023. Process optimization for the production of biodiesel from Azolla microphylla oil and its fuel characterization. Energy & Environment34, 193–211.

Karthikeya K, Sarma M K, Ramkumar N, Subudhi S. 2020. Exploring optimal strategies for aquatic macrophyte pre-treatment: Sustainable feedstock for biohydrogen production. Biomass and Bioenergy140, 105678.

Katayama N, Yamashita M, Kishida Y, Liu C C, Watanabe I, Wada H. 2008. Azolla as a component of the space diet during habitation on Mars. Acta Astronautica63, 1093–1099.

Kaur A, Singh A, Kaur H, Gupta A, Surasani V K R, Dhaliwal S S. 2024. Influence of different processing conditions on nutritional, phytochemical, and physical properties of aquatic fern (Azolla pinnata): A sustainable nutrient-rich human food. ACS Food Science & Technology4, 344–354.

Kaur M, Kumar M, Sachdeva S, Puri S K. 2018. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresource Technology251, 390–402.

Kerketta S, Sarangdevot S S, Naruka P S, Verma S, Pachauri C P, Singh A K, Singh J P, Bhadauria S S. 2020. Effect of Azolla as feed supplement on milk production of lactating buffaloes at Neemuch district Madhya Pradesh. Indian Journal of Dairy Science73, 380–382.

Khair M, Azman E A, Ismail R, Rani M. 2021. Effect of the biofertilizer (Azolla pinnata) in combination with inorganic fertilizers on growth and yield of rice. Grassroots Journal of Natural Resources4, 59–75.

Khatun A, Ali M A, Dingle J G. 1999. Comparison of the nutritive value for laying hens of diets containing Azolla (Azolla pinnata) based on formulation using digestible protein and digestible amino acid versus total protein and total amino acid. Animal Feed Science and Technology81, 43–56.

Kimani S M, Bimantara P O, Hattori S, Tawaraya K, Sudo S, Cheng W. 2020. Azolla incorporation and dual cropping influences CH4 and N2O emissions from flooded paddy ecosystems. Soil Science and Plant Nutrition66, 152–162.

Kochhar S, Kochhar V K, Sane P V. 1994. Characterization of a meso-diaminopimelate-sensitive aspartate kinase from cyanobacteria. FEMS Microbiology Letters117, 257–262.

Korsa G, Alemu D, Ayele A. 2024. Azolla plant production and their potential applications. International Journal of Agronomy2024, 1716440.

Kumar V, Kumar P, Kumar P, Singh J. 2020. Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environmental Technology & Innovation17, 100627.

Lee S. 2021. Recent advances on nitrogen use efficiency in rice. Agronomy11, 753.

Leonard V, Breyne C, Micha J C, Larondelle Y. 1998. Digestibility and transit time of Azolla filiculoides Lamarck in Oreochromis aureus (Steindachner). Aquaculture Research29, 159–165.

Leterme P, Londoño A M, Muñoz J E, Súarez J, Bedoya C A, Souffrant W B, Buldgen A. 2009. Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Animal Feed Science and Technology149, 135–148.

Li F, Feng J, Zhou X, Liu Y, Xu C, Ji L, Chen Z, Jijakli M H, Fang F, Zhang W. 2020. Effect of rice–fish/shrimp co-culture on sediment resuspension and associated nutrients release in intensive aquaculture ponds. Archives of Agronomy and Soil Science66, 971–982.

Liang H, Gao S, Ma J, Zhang T, Wang T, Zhang S, Wu Z. 2021. Effect of nitrogen application rates on the nitrogen utilization, yield and quality of rice. Food and Nutrition Sciences12, 13–27.

Lintern G, Scarlett A G, Gagnon M M, Leeder J, Amhet A, Lettoof D C, Leshyk V O, Bujak A, Bujak J, Grice K. 2024. Phytoremediation potential of Azolla filiculoides: Uptake and toxicity of seven per- and polyfluoroalkyl substances (PFAS) at environmentally relevant water concentrations. Environmental Toxicology and Chemistry43, 2157–2168.

Liu C, Guo B, Li H, Fu Q, Li N, Lin Y, Xu G. 2021. Azolla incorporation under flooding reduces grain cadmium accumulation by decreasing soil redox potential. Scientific Reports11, 6325.

Liu J, Xu H, Jiang Y, Zhang K, Hu Y, Zeng Z. 2017. Methane emissions and microbial communities as influenced by dual cropping of Azolla along with early rice. Scientific Reports7, 40635.

Liu X, Shi Z J, Zhang J E, Sun D L, Wei H. 2023. Effects of integrated rice–animals co-culture on paddy soil and water properties and rice yield: A meta-analysis. Archives of Agronomy and Soil Science69, 2187–2201.

Liu X, Xu G, Wang Q, Hang Y. 2017. Effects of insect-proof net cultivation, rice–duck farming, and organic matter return on rice dry matter accumulation and nitrogen utilization. Frontiers in Plant Science847.

Loh S K, Asubonteng K O, Adanu S K. 2022. Effects of monocropping on land cover transitions in the wet evergreen agro-ecological zone of Ghana. Land, 11, 1063.

Lumsangkul C, Vu Linh N, Chaiwan F, Abdel-Tawwab M, Dawood M A O, Faggio C, Jaturasitha S, Van Doan H. 2022. Dietary treatment of Nile tilapia (Oreochromis niloticus) with aquatic fern (Azolla caroliniana) improves growth performance, immunological response, and disease resistance against Streptococcus agalactiae cultured in bio-floc system. Aquaculture Reports24, 101114.

Ma Y, Yu A, Zhang L, Zheng R. 2024. Effects of rice–frog co-cropping on the soil microbial community structure in reclaimed paddy fields. Biology13, 396.

de Macale M A R, Vlek P L G. 2004. The role of Azolla cover in improving the nitrogen use efficiency of lowland rice. Plant Soil263, 311–321.

Malyan S K, Bhatia A, Kumar S S, Fagodiya R K, Pugazhendhi A, Duc P A. 2019. Mitigation of greenhouse gas intensity by supplementing with Azolla and moderating the dose of nitrogen fertilizer. International Symposium on Biocontrol and Biotechnology Applications20, 101266.

Meena G S, Dhaka B, Singh B, Meena R K, Meena K. 2017. Effect of Azolla as feed supplement on milk yield in buffaloes. International Journal of Current Microbiology and Applied Sciences6, 3490–3494.

Miranda A F, Kumar N R, Spangenberg G, Subudhi S, Lal B, Mouradov A. 2020. Aquatic plants, Landoltia punctata, and Azolla filiculoides as bio-converters of wastewater to biofuel. Plants9, 437.

Miranda C, Rmv P, Jayalaxmi P. 2013. A study on economics of inclusion of Azolla pinnata in swine rations. International Journal of Agricultural Sciences and Veterinary Medecine1, 50–56.

Mishra A, Mishra K. 2007. Use of Azolla pinnata as biofertilizer for the production of rice Pant-4 in Jaunpur district (UP), India. Plant Archives7, 313–316.

Mochimaru M, Masukawa H, Maoka T, Mohamed H E, Vermaas W F, Takaichi S. 2008. Substrate specificities and availability of fucosyltransferase and beta-carotene hydroxylase for myxol 2´-fucoside synthesis in Anabaena sp. strain PCC 7120 compared with Synechocystis sp. strain PCC 6803. Journal of Bacteriology190, 6726–6733.

Mochimaru M, Masukawa H, Takaichi S. 2005. The cyanobacterium Anabaena sp. PCC 7120 has two distinct beta-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS Letters579, 6111–6114.

Morimoto J, Goto S, Kuroyanagi A, Toyoshima M, Shida Y. 2022. Natural succession of wetland vegetation in a flood-control pond constructed on abandoned farmland. In: Nakamura F, ed., Green Infrastructure and Climate Change Adaptation in FunctionImplementation and Governance. Springer Nature, Singapore. pp. 209–224.

Munawaroh H S H, Apdila E T, Awai K. 2020. hetN and patS mutations enhance accumulation of fatty alcohols in the hglT mutants of Anabaena sp. PCC 7120. Frontiers in Plant Science11, 804.

Muro-Pastor M I, Reyes J C, Florencio F J. 2005. Ammonium assimilation in cyanobacteria. Photosynthesis Research83, 135–150.

Mustabi J, Asmawati, Amrawaty A A, Purwanti S. 2021. Implementation of integrated farming system of Azolla plants, duck and fish in livestock groups in Baruga village, Bantimurung district Maros regency. IOP Conference Series (Earth and Environmental Science), 788, 012074.

Naghipour D, Ashrafi S D, Gholamzadeh M, Taghavi K, Naimi-Joubani M. 2018. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data in Brief21, 1409–1414.

Natuhara Y. 2013. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecological Engineering56, 97–106.

Novair S B, Hosseini H M, Etesami H, Razavipour T. 2020. Rice straw and composted Azolla alter carbon and nitrogen mineralization and microbial activity of a paddy soil under drying–rewetting cycles. Applied Soil Ecology154, 103638.

NSTDA (National Science and Technology Development Agency). 2023. NSTDA-BCG-NAGA Belt Road project promotes the use of azolla in glutinous rice cultivation. [2024-9-14]. https://www.nstda.or.th/en/news/news-years-2023/bcg-naga-belt-road-project-promotes-the-use-of-azolla-in-glutinous-rice-cultivation.html

Nuraini N, Mirzah M, Nur Y, Harnentis H. 2021. Improving Azolla microphylla through fermentation with lignocellulolytic fungi and its application in broiler feed. Advances in Animal and Veterinary Sciences10, 1090–1100.

Oktavianawati I, Andinata D, Isnaeni A N, Hermiastuti M, Rahmawati N, Handayani W, Winata I N A. 2016. Effects of feeding diets containing Azolla pinnata and probiotic on the growth and nutritional content of Patin fish (Pangasius djambal). Agriculture and Agricultural Science Procedia9, 403–410.

Oliveira P, Martins N M, Santos M, Couto N A, Wright P C, Tamagnini P. 2015. The Anabaena sp. PCC 7120 exoproteome: Taking a peek outside the box. Life (Basel), 5, 130–163.

Padmesh T V N, Vijayaraghavan K, Anand K, Velan M. 2008. Biosorption of basic dyes onto Azolla filiculoides: Equilibrium and kinetic modeling. Asia-Pacific Journal of Chemical Engineering3, 368–373.

Padmesh T V N, Vijayaraghavan K, Sekaran G, Velan M. 2005. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoidesJournal of Hazardous Materials125, 121–129.

Pandey V C. 2012. Phytoremediation of heavy metals from fly ash pond by Azolla carolinianaEcotoxicology and Environmental Safety82, 8–12.

Paramesh V, Parajuli R, Chakurkar E B, Sreekanth G B, Kumar H B C, Gokuldas P P, Mahajan G R, Manohara K K, Viswanatha R K, Ravisankar N. 2019. Sustainability, energy budgeting, and life cycle assessment of crop–dairy–fish–poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy188, 116101.

Polińska W, Kotowska U, Karpińska J, Piotrowska-Niczyporuk A. 2023. Removal of benzotriazole micropollutants using Spirodela polyrhiza (L.) Schleid. and Azolla caroliniana Willd. Environmental Pollution332, 121982.

Poluri K M, Gulati K, Sarkar S. 2021. Structural and functional properties of proteins. In: Poluri K M, Gulati K, Sarkar S, eds., Protein-protein Interactions in Principles and Techniques. Springer, Singapore. pp. 1–60.

Pouil S, Slembrouck J, Wilfart A, Caruso D, Arifin O Z, Favalier N, Samsudin R, Kristanto A H, Aubin J. 2024. The potential of floating macrophytes as feed and phytoremediation resources to improve the environmental performance of giant gourami production in Indonesia: A life cycle assessment. Aquaculture579, 740181.

Qoms M S, Arulrajah B, Ibadullah W Z W, Ramli N S, Shamsudin R, Chau D M, Saari N. 2024. Antihypertensive, antidiabetic, and antioxidant properties of novel Azolla pinnata fern protein hydrolysates: Inhibition mechanism, stability, profiling, and molecular docking. Food and Bioprocess Technology17, 4806–4823.

Qoms M S, Arulrajah B, Shamsudin R, Ibadullah W Z W, Saari N. 2022. Valorization of green biomass Azolla pinnata fern: Multi-parameter evaluation of processing conditions on protein extractability and their influence on the physicochemical, structural, techno-functional properties and protein quality. Journal of the Science of Food and Agriculture102, 6974–6983.

Qoms M S, Arulrajah B, Shamsudin R, Ramli N S, Ibadullah W Z W, Chau D M, Saari N. 2023. Enzymolysis of Azolla pinnata protein concentrate: Effect of protease types and hydrolysis extents on the physicochemical, techno-functional and biological properties. Food Bioscience53, 102787.

Radhakrishnan S, Saravana Bhavan P, Seenivasan C, Shanthi R, Muralisankar T. 2014. Replacement of fishmeal with Spirulina platensisChlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergiiThe Journal of Basic & Applied Zoology67, 25–33.

Rahmah S, Nasrah U, Lim L S, Ishak S D, Rozaini M Z H, Liew H J. 2022. Aquaculture wastewater-raised Azolla as partial alternative dietary protein for Pangasius catfish. Environmental Research208, 112718.

Rahman S M A, Kamel M A, Ali M A, Alotaibi B S, Aharthy O M, Shukry M, Abd El-Bary H M. 2023. Comparative study on the phytochemical characterization and biological activities of Azolla caroliniana and Azolla filiculoidesIn vitro study. Plants12, 3229.

Rai S, Yadav S, Rai R, Chatterjee A, Singh S, Rai L C. 2019. Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in EcoliInternational Journal of Biological Macromolecules124, 981–993.

Rajagopal G, Nivetha A, Ilango S, Muthudevi G P, Prabha I, Arthimanju R. 2021. Phytofabrication of selenium nanoparticles using Azolla pinnata: Evaluation of catalytic properties in oxidation, antioxidant and antimicrobial activities. Journal of Environmental Chemical Engineering9, 105483.

Rajendran R, Reuben, R. 1991. Evaluation of the water fern Azolla microphylla for mosquito population management in the rice-land agro-ecosystem of south India. Medical and Veterinary Entomology5, 299–310.

Ran L, Larsson J, Vigil-Stenman T, Nylander J A A, Ininbergs K, Zheng W W, Lapidus A, Lowry S, Haselkorn R, Bergman B. 2010. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE5, e11486.

Ranum P, Peña-Rosas J P, Garcia-Casal M N. 2014. Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences1312, 105–112.

Ravi R, Rajendran D, Oh W D, Mat Rasat M S, Hamzah Z, Ishak I H, Amin M F M. 2020. The potential use of Azolla pinnata as an alternative bio-insecticide. Scientific Reports10, 19245.

Rawat N, Kumari K N R, Singh F, Gilhare V R. 2015. Effect of Azolla-supplemented feeding on milk production of cattle and production performance of broilers. Applied Biological Research17, 214–218.

Razavipour T, Moghaddam S S, Doaei S, Noorhosseini S A, Damalas C A. 2018. Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agricultural Water Management209, 1–10.

Reddy Y P, Yadav R K, Tripathi K, Abraham G. 2019. Isolation and characterization of high temperature tolerant mutant from the cyanobacterium Anabaena doliolumJournal of Basic Microbiology59, 314–322.

RID (Royal Irrigation Department). 2016. Manual for alternate wetting and drying rice cultivation under the demonstration plot project for alternate wetting and drying paddy cultivation, fiscal year 2015. [2024-9-30]. https://water.rid.go.th/waterm/template/manager/FProjectMAC/portfolio/58.pdf

Roberts A E, Boylen C W, Nierzwicki-Bauer S A. 2014. Effects of lead accumulation on the Azolla carolinianaAnabaena association. Ecotoxicology and Environmental Safety102, 100–104.

Roy D, Pakhira M C, Roy M. 2016. Estimation of amino acids, minerals and other chemical compositions of AzollaAdvances in Life Sciences5, 2692–2696.

Sadeghi J, Zarkami R, Sabetraftar K, Van Damme P. 2013. A review of some ecological factors affecting the growth of Azolla spp. Caspian Journal of Environmental Sciences11, 65–76.

Safriyani E, Hasmeda M, Munandar M, Sulaiman F, Holidi H. 2020. Increasing the growth and production of irrigated rice through the integrated application of rice–duck–azolla. Acta Agrobotanica73, 1–8.

Samad F A A, Idris L H, Abu Hassi H, Goh Y M, Loh T C. 2020. Effects of Azolla spp. as feed ingredient on the growth performance and nutrient digestibility of broiler chicken. Journal of Animal Physiology and Animal Nutrition (Berlin), 104, 1704–1711.

Sarojini G, Kannan P, Rajamohan N, Rajasimman M. 2023. Bio-fabrication of porous magnetic chitosan/Fe3O4 nanocomposite using Azolla pinnata for removal of chromium - Parametric effects, surface characterization and kinetics. Environmental Research218, 114822.

Seleiman M F, Elshayb O M, Nada A M, El-leithy S A, Baz L, Alhammad B A, Mahdi A H A. 2022. Azolla compost as an approach for enhancing growth, productivity and nutrient uptake of Oryza sativa L. Agronomy12, 416.

Setiawati M R, Damayani M, Herdiyantoro D, Suryatmana P, Anggraini D, Khumairah F H. 2018. The application dosage of Azolla pinnata in fresh and powder form as organic fertilizer on soil chemical properties, growth and yield of rice plant. In: Proceedings of the 1st International Conference and Exhibition on Powder Technology Indonesia (ICePTi). AIP Publishing, Melville, New York.

Shemami M R, Tabarsa M, You S. 2018. Isolation and chemical characterization of a novel immunostimulating galactofucan from freshwater Azolla filiculoidesInternational Journal of Biological Macromolecules118, 2082–2091.

Shestakov S, Mikheeva L, Mardanov A, Ravin N, Skryabin K. 2013. Genomic analysis of Anabaena variabilis mutants PK17 and PK84 that are characterised by high production of molecular hydrogen. Advances in Microbiology3, 350–365.

Simarmata T, Proyaga M K, Setiawati M R, Adinata K, Stöber S. 2023. Environmentally friendly bioameliorant to increase soil fertility and rice (Oryza sativa) production. Open Agriculture8, 1–9.

Simarmata T, Prayoga M K, Setiawati M R, Adinata K, Stöber S. 2021. Improving the climate resilience of rice farming in flood-prone areas through Azolla biofertilizer and saline-tolerant varieties. Sustainability13, 12308.

Singh A L, Singh P K. 1986. Comparative studies on different methods of Azolla utilization in rice culture. The Journal of Agricultural Science107, 273–278.

Singh P, Tiwari A, Singh S P, Asthana R K. 2013. Proline biosynthesizing enzymes (glutamate 5-kinase and pyrroline-5-carboxylate reductase) from a model cyanobacterium for desiccation tolerance. Physiology and Molecular Biology of Plants19, 521–528.

Sow S, Ranjan S. 2020. Integration of Azolla and fish in rice-duck farming system. Agriculture & Food (E-newsletter), 2, 496–499.

Subpiramaniyam S, Hong S C, Yi P I, Jang S H, Suh J M, Jung E S, Park J S, Palanivel V, Song Y C, Cho L H, Park Y H, Kim J S. 2023. Biochemical responses and phytoremediation potential of Azolla imbricata (Roxb.) Nakai in water and nutrient media exposed to waste metal cutting fluid along with temperature and humidity stress. Journal of Hazardous Materials451, 131101.

Suh J. 2014. Theory and reality of integrated rice–duck farming in Asian developing countries: A systematic review and SWOT analysis. Agricultural Systems125, 74–81.

Sundararaman S, Karthikeyan M, Aravind kumar J, Deivasigamani P, Soosai M R, Ramaraja A, Sahana S, Thamer B M, El-Newehy M H, Rajasimman M T R P. 2024. Facile synthesis of iron nanoparticles from Camellia sinensis leaves catalysed for biodiesel synthesis from Azolla filiculoidesScientific Reports14, 12818.

Suraphonphinit A, Phakamas N, Samart S. 2023. Rate of Azolla microphylla dry matter on nitrogen use efficiency and yield of japonica rice. International Journal of Agricultural Technology19, 2681–2692.

Surtida A P. 2000. Rice–fish culture systems. SEAFDEC Asian Aquaculture22, 22–23.

Swain B, Naik P, Sahoo S, Mishra S, Kumar D. 2018. Effect of feeding of Azolla (Azolla pinnata) on the performance of white pekin laying ducks. International Journal of Livestock Research8, 248–253.

Tagkas C F, Rizos E C, Markozannes G, Karalexi M A, Wairegi L, Ntzani E E. 2024. Fertilizers and human health - A systematic review of the epidemiological evidence. Toxics12, 694.

Tan E C D, Lamers P. 2021. Circular bioeconomy concepts - A perspective. Frontiers in Sustainability2, 1–8.

Teresa B. 2011. Nutritional value of soybean meal. In: Hany E S, ed., Soybean and Nutrition in IntechOpenE-book. IntechOpen, London.

Thiruvenkatachari S, Saravanan C G, Edwin Geo V, Vikneswaran M, Udayakumar R, Aloui F. 2021. Experimental investigations on the production and testing of Azolla methyl esters from Azolla microphylla in a compression ignition engine. Fuel287, 119448.

Thomas S P, Zaritsky A, Boussiba S. 1991. Ammonium excretion by a mutant of the nitrogen-fixing cyanobacterium Anabaena siamensisBioresource Technology38, 161–166.

Tran T L N, Miranda A F, Abeynayake S W, Mouradov A. 2020. Differential production of phenolics, lipids, carbohydrates and proteins in stressed and unstressed aquatic plants, Azolla filiculoides and Azolla pinnataBiology (Basel), 9, 1–15.

Tran T T, Kano-Nakata M, Takeda M, Menge D, Mitsuya S, Inukai Y, Yamauchi A. 2014. Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant and Soil378, 139–152.

Troshina O, Jansson E, Lindblad P. 1997. Ornithine cycle in Nostoc PCC 73102: Presence of an in vitro functional argininosuccinate lyase. FEMS Microbiology Letters152, 75–81.

Tyasmoro S, Saitama A. 2023. Analysis plant growth, yield and efficiency of nitrogen fertilization in paddy using green manure of AzollaJournal of Biological Sciences23, 94–102.

UN (United Nations). The 17 sustainable development goals. [2024-9-14]. https://sdgs.un.org/goals

Urban J, Jaworski S, Lange A, Bień D, Matuszewski A, Michalczuk M. 2023. Effects of the addition of crude fibre concentrate on performance, welfare and selected caecal bacteria of broilers. Animals13, 3883.

Vahedi V, Hedayat-Evrigh N, Holman B W B, Ponnampalam E N. 2021. Supplementation of macro algae (Azolla pinnata) in a finishing ration alters feed efficiency, blood parameters, carcass traits and meat sensory properties in lambs. Small Ruminant Research203, 106498.

Vaishampayan A, Reddy Y R, Singh B D, Singh R M. 1992. Reduced phosphorus requirement of a mutant Azolla-Anabaena symbiotic N2-fixing complex. Journal of Experimental Botany43, 851–856.

de Vries S, de Vries J. 2022. Evolutionary genomic insights into cyanobacterial symbioses in plants. Quantitative Plant Biology3, e16.

Vroom R J E, Smolders A J P, Van de Riet B P, Lamers L P M, Güngör E, Krosse S, Verheggen-Kleinheerenbrink G M, Van der Wal N R, Kosten S. 2024. Azolla cultivation enables phosphate extraction from inundated former agricultural soils. Water Research254, 121411.

Watanabe I. 1982. Azolla-Anabaena-symbiosis its physiology and use in tropical agriculture. In: Dommergues Y R, Diem H G, eds., Microbiology of Tropical Soils and Plant Productivity. Springer, Netherlands. pp. 169–185.

Wenjie O, Ahmed W, Xiuxian F, Lu W, Jiannan L, Jie Y, Asghar R M A, Mahmood M, Alatalo J M, Imtiaz M, Li W, Mehmood S. 2022. The adsorption potential of Cr from water by ZnO nanoparticles synthesized by Azolla pinnataBioinorganic Chemistry and Applications2022, 6209013.

Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P. 2017. Glutathione and its antiaging and antimelanogenic effects. ClinicalCosmetic and Investigational Dermatology10, 147–153.

Widiastuti D, Davis J G. 2020. Optimization of the nutrient growing solution and inoculation rate for Azolla mexicana production and use as fertilizer. Journal of Plant Nutrition44, 1404–1419.

Wilson J J, Mahendran S, Sivakumar T, Ponmanickam P, Thangaraj R. 2023. Mosquito larvicidal activity of silver nanoparticles synthesized using Azolla pinnata against Culex quinquefasciatus Say (Diptera: Culicidae). South African Journal of Botany157, 380–386.

Winstead D, Di Gioia F, Jauregui M, Jacobson M. 2024. Nutritional properties of raw and cooked Azolla caroliniana Willd., an aquatic wild edible plant. Food Science & Nutrition12, 2050–2060.

Xu H, Zhu B, Liu J, Li D, Yang Y, Zhang K, Jiang Y, Hu Y, Zeng Z. 2017. Azolla planting reduces methane emission and nitrogen fertilizer application in double rice cropping system in southern China. Agronomy for Sustainable Development37, 1–9.

Yang G, Ji H, Sheng J, Zhang Y, Feng Y, Guo Z, Chen L. 2020. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice. Science of the Total Environment743, 140799.

Yang Y Q, Deng S F, Yang Y Q, Ying Z Y. 2022. Comparative analysis of the endophytic bacteria inhabiting the phyllosphere of aquatic fern Azolla species by high-throughput sequencing. BMC Microbiology22, 246.

Yang Z, Feng Y, Zhang S, Hu Y, Tang Y, Gu H, Gu Z, Xv Y, Cai Y, Zhang H. 2022. Effects of rice–prawn (Macrobrachium nipponense) co-culture on the microbial community of soil. Applied Microbiology and Biotechnology106, 7361–7372.

Ye H, Yang G. 2021. Effect of Azolla imbricata and Spirodela polyrrhiza on chromium(VI) removal and power generation in a plant microbial fuel cell. International Journal of Electrochemical Science16, 211044.

Yue Q, Sun J, Hillier J, Sheng J, Guo Z, Zhu P, Cheng K, Pan G, Li Y, Wang X. 2023. Green manure rotation and application increase rice yield and soil carbon in the Yangtze River valley of China. Pedosphere33, 589–599.

Zhang C, Hao E, Chen X, Huang C, Liu G, Chen H, Wang D, Shi L, Xuan F, Chang D, Chen Y. 2023. Dietary fiber level improve growth performance, nutrient digestibility, immune and intestinal morphology of broilers from day 22 to 42. Animals (Basel), 13, 1–14.

Zhao F, Xu C M, Zhang W J, Zhang X F, Li F B, Chen J P, Wang D Y. 2011. Effects of rhizosphere dissolved oxygen content and nitrogen form on root traits and nitrogen accumulation in rice. Rice Science18, 304–310.

Zheng X, Lin Z, Lu J, Ye R, Qu M, Wang J, Xu G, Ying Z, Chen S. 2022. De novo transcriptome analysis reveals the molecular regulatory mechanism underlying the response to excess nitrogen in Azolla spp. Aquatic Toxicology248, 106202.

No related articles found!
No Suggested Reading articles found!