Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Convergent dynamics and shared mechanisms of three pool soil carbon mineralization under different grassland managements

Junhao Feng1*, Ji Chen2*, Xiaowei Liu3, Yudu Jing4, 5, 6, Ke Liang3, Qiang Yu5, 7, Changhui Peng8, 9, Liang Guo7, 10, 11#

1 State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China

2 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China

3 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China

4 The Research Center for Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China

5 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China

6 University of Chinese Academy of Sciences, Beijing 100049, China

7 State Key Laboratory of Soil and Water Conservation and Desertification Control, Northwest A&F University, Yangling 712100, China

8 School of Geographic Sciences, Hunan Normal University, Changsha 410081, China

9 Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal H3C3P8, Canada

10 Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining 810016, China

11 Administration Bureau of Ningxia Yunwushan National Nature Reserve, Guyuan 756000, China

 Highlights  l A three-pool model coupled with 553-day incubation reveals carbon pool decomposition.

l Mineralization shifts from active to passive pools in enclosed and grazed soils.

l Similar mineralization mechanisms are shared, despite faster rates in enclosed soils.

l Microbial strategies and enzyme activities jointly regulate SOC mineralization.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

草地土壤有机碳(SOC)的矿态对陆地生物地球化学循环至关重要。然而,不同碳库的SOC矿化过程如何受到胞外酶代谢与微生物群落结构的调控仍不清楚。本研究通过553天的室内培养实验,探究了封育与放牧草地土壤CO2排放、胞外酶活性、微生物生物量及群落组成随时间变化特征。基于三库模型,我们量化了活性、缓效及惰性碳库的SOC矿化动态,揭示了在长期碳周转过程中,矿化主导地位从活性碳库向惰性碳库转移的趋势,并受草地管理措施影响。与放牧草地相比,封育草地的活性碳库规模约高110%,且初期SOC矿化速率更高(培养前113天显著偏高),但两种管理方式下微生物与酶的长期调控机制—尤其是微生物策略的转变、酶活性模式及其与碳库的相互作用—表现出高度的相似性。碳库动态的转变源于微生物分解惰性碳能力的增强,该过程伴随氧化酶产量显著提升(如封育和放牧土壤中质量比氧化酶活性分别增加190.6%和256.1%)以及氮、磷需求升高。值得注意的是,微生物群落由快速生长的富营养型类群(如变形菌门、拟杆菌门、子囊菌门)逐渐向慢速生长的寡营养型类群(如酸杆菌门、放线菌门、浮霉菌门、担子菌门)转变,细菌与真菌的寡/富营养型比率分别上升55.5–62.6%和96.9–247.5%,且与酶活性及化学计量比变化密切相关。本研究从机制层面阐明了不同草地管理模式下,微生物生态策略与酶活性如何协同调控各碳库的SOC矿化过程,为深化SOC周转认知、提升碳循环预测能力提供理论依据,对全球气候变化反馈研究具有重要意义。



Abstract  

The mineralization dynamics of soil organic carbon (SOC) in grasslands are crucial to terrestrial biogeochemical cycles. However, the regulatory mechanisms underlying extracellular enzyme metabolism and microbial community structure during SOC mineralization across different carbon pools remain poorly understood. In this study, a 553-day incubation experiment was conducted to examine temporal changes in CO2 emissions, extracellular enzyme activities, microbial biomass, and microbial community composition in soils from both enclosed and grazed grasslands. Using a three-pool model, SOC dynamics were quantified within active, slow, and passive carbon pools, revealing a shift in the dominance of mineralization from the active carbon pool to the passive carbon pool during the long-term carbon turnover, with differences observed across grassland management strategies. Compared to grazed grasslands, enclosed grasslands exhibited an approximately 110% larger active carbon pool and higher initial SOC mineralization rates (significantly higher during the first 113 days), yet long-term microbial and enzymatic regulatory mechanismsparticularly shifts in microbial strategies, enzyme activity patterns, and their interactions with carbon pools—were similar across both management regimes. The observed shifts in carbon pool dynamics were driven by enhanced microbial capacity to decompose passive carbon, associated with substantially increased oxidative enzyme production (e.g., mass-specific oxidase activity increased by 190.6% in enclosed soil and by 256.1% in grazed soil) and elevated nitrogen and phosphorus demands. Notably, microbial communities shifted from fast-growing copiotrophic taxa (e.g., Proteobacteria, Bacteroidetes, Ascomycota) to slower-growing oligotrophic taxa (e.g., Acidobacteria, Actinobacteria, Planctomycetes, Basidiomycota), with the oligotroph-to-copiotroph ratio increasing by 55.5–62.6% for bacteria and 96.9–247.5% for fungi. These changes were closely linked to shifts in enzyme activity profiles and stoichiometric ratios. Overall, this study provides mechanistic insights into how microbial ecological strategies and enzyme activities interact to regulate SOC mineralization across different pools under contrasting grassland management regimes. These findings advance our understanding of SOC turnover and improve predictive capabilities for carbon cycling, with broader implications for global climate change feedbacks.

Keywords:  soil organic carbon mineralization       soil respiration       three-pool model       microbial community       extracellular enzyme       incubation experiment       grasslands  
Online: 18 December 2025  
Fund: 

This study was funded by the National Natural Science Foundation of China (42377471), the Natural Science Foundation of Ningxia Hui Autonomous Region, China (2024A AC05099), and the Open Project of Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (2023-SJY-KF-04) from Qinghai University, China.

About author:  #Correspondence Liang Guo, Mobile: +86-18709221128, E-mail: guoliang2014@nwafu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Junhao Feng, Ji Chen, Xiaowei Liu, Yudu Jing, Ke Liang, Qiang Yu, Changhui Peng, Liang Guo. 2025. Convergent dynamics and shared mechanisms of three pool soil carbon mineralization under different grassland managements. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.030

Andren O, Paustian K. 1987. Barley straw decomposition in the field: A comparison of models. Ecology, 68, 1190–1200.

Bai X, Yang X, Zhang S, An S. 2021. Newly assimilated carbon allocation in grassland communities under different grazing enclosure times. Biology and Fertility of Soils, 57, 563–574.

Bai Y, Cotrufo M F. 2022. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, 377, 603–608.

Bardgett R D, van der Putten W H. 2014. Belowground biodiversity and ecosystem functioning. Nature, 515, 505–511.

Bernhardt L T, Smith R G, Grandy A S, Mackay J E, Warren N D, Geyer K M, Ernakovich J G. 2022. Soil microbial communities vary in composition and functional strategy across soil aggregate size class regardless of tillage. Elementa: Science of the Anthropocene, 10, 00023.

Birge H E, Conant R T, Follett R F, Haddix M L, Morris S J, Snapp S S, Wallenstein M D, Paul E A. 2015. Soil respiration is not limited by reductions in microbial biomass during long-term soil incubations. Soil Biology and Biochemistry, 81, 304–310.

Chen G, Yuan J, Chen H, Wang L, Wang S, Wang Y. 2024. Manure application influences microbial stoichiometry and alters microbial life strategies to regulate phosphorus bioavailability in low-P paddy soil. Soil and Tillage Research, 244, 106241.

Chen J, Elsgaard L, van Groenigen K J, Olesen J E, Liang Z, Jiang Y, Lærke P E, Zhang Y, Luo Y, Hungate B A, Sinsabaugh R L, Jørgensen U. 2020. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biology, 26, 1944–1952.

Chen J, Luo Y, García-Palacios P, Cao J, Dacal M, Zhou X, Li J, Xia J, Niu S, Yang H, Shelton S, Guo W, van Groenigen K J. 2018. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biology, 24, 4816–4826.

Delgado-Baquerizo M, Maestre F T, Reich P B, Jeffries T C, Gaitan J J, Encinar D, Berdugo M, Campbell C D, Singh B K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.

Delgado-Baquerizo M, Oliverio A M, Brewer T E, Benavent-González A, Eldridge D J, Bardgett R D, Maestre F T, Singh B K, Fierer N. 2018. A global atlas of the dominant bacteria found in soil. Science, 359, 320–325.

Domínguez M T, Holthof E, Smith A R, Koller E, Emmett B A. 2017. Contrasting response of summer soil respiration and enzyme activities to long-term warming and drought in a wet shrubland (NE Wales, UK). Applied Soil Ecology, 110, 151–155.

Feng W, Liang J, Hale L E, Jung C G, Chen J, Zhou J, Xu M, Yuan M, Wu L, Bracho R, Pegoraro E, Schuur E A G, Luo Y. 2017. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Global Change Biology, 23, 4765–4776.

Feyisa K, Beyene S, Angassa A, Said M Y, de Leeuw J, Abebe A, Megersa B. 2017. Effects of enclosure management on carbon sequestration, soil properties and vegetation attributes in East African rangelands. Catena, 159, 9–19.

Fierer N. 2017. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579–590.

Fierer N, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.

Gałązka A, Jankiewicz U, Orzechowski S. 2025. The role of ligninolytic enzymes in sustainable agriculture: Applications and challenges. Agronomy, 15, 451.

Gelman A, Rubin D B. 1992. Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.

German D, Weintraub M, Grandy S, Lauber C, Rinkes Z, Allison S. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43, 1387–1397.

Giannetta B, Plaza C, Vischetti C, Cotrufo M F, Zaccone C. 2018. Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biology and Fertility of Soils, 54, 671–681.

Guan X, Jiang J, Jing X, Feng W, Luo Z, Wang Y, Xu X, Luo Y. 2022. Optimizing duration of incubation experiments for understanding soil carbon decomposition. Geoderma, 428, 116225.

Guo D, Li X, Wang J, Niu D, Guo W, Fu H, Luo Y. 2020. Edaphic and microbial determinants of the residence times of active and slow C pools on the Tibetan Plateau. Geoderma, 357, 113942.

Guo D, Wang J, Fu H, Wen H, Luo Y. 2017. Cropland has higher soil carbon residence time than grassland in the subsurface layer on the Loess Plateau, China. Soil and Tillage Research, 174, 130–138.

Guo X, Viscarra Rossel R A, Wang G, Xiao L, Wang M, Zhang S, Luo Z. 2022. Particulate and mineral-associated organic carbon turnover revealed by modelling their long-term dynamics. Soil Biology and Biochemistry, 173, 108780.

Guo X, Yan M, Huang D, Chen S, Zhang D, Li Z, Yang X, Wu W. 2023. A large scale 16S ribosomal RNA gene amplicon dataset of hand, foot and mouth patients and healthy individuals. Scientific Data, 10, 48.

Hastings W K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.

Hilscher A, Heister K, Siewert C, Knicker H. 2009. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Organic Geochemistry, 40, 332–342.

Ho A, Di Lonardo D P, Bodelier P L E. 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology, 93, fix006.

Hu J, Cui Y, Manzoni S, Zhou S, Cornelissen J H C, Huang C, Schimel J, Kuzyakov Y. 2025. Microbial carbon use efficiency and growth rates in soil: Global patterns and drivers. Global Change Biology, 31, e70036.

Huo C, Luo Y, Cheng W. 2017. Rhizosphere priming effect: A meta-analysis. Soil Biology and Biochemistry, 111, 78–84.

Jian S, Li J, Wang G, Kluber L A, Schadt C W, Liang J, Mayes M A. 2020. Multi-year incubation experiments boost confidence in model projections of long-term soil carbon dynamics. Nature Communications, 11, 5864.

Kittredge H A, Cannone T, Funk J, Chapman S K. 2018. Soil respiration and extracellular enzyme production respond differently across seasons to elevated temperatures. Plant and Soil, 425, 351–361.

Koranda M, Rinnan R, Michelsen A. 2023. Close coupling of plant functional types with soil microbial community composition drives soil carbon and nutrient cycling in tundra heath. Plant and Soil, 488, 551–572.

Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184–199.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R, Ma R, Lin J, Kurganova I, Wang X, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.

Li J, Jian S, de Koff J P, Lane C S, Wang G, Mayes M A, Hui D. 2018. Differential effects of warming and nitrogen fertilization on soil respiration and microbial dynamics in switchgrass croplands. Global Change Biology Bioenergy, 10, 565–576.

Li J, Pei J, Fang C, Li B, Nie M. 2023. Thermal adaptation of microbial respiration persists throughout long-term soil carbon decomposition. Ecology Letters, 26, 1803–1814.

Li Y, Ma J, Li Y, Shen X, Xia X. 2024. Microbial community and enzyme activity respond differently to seasonal and edaphic factors in forest and grassland ecosystems. Applied Soil Ecology, 194, 105167.

Liang J, Li D, Shi Z, Tiedje J M, Zhou J, Schuur E A G, Konstantinidis K T, Luo Y. 2015. Methods for estimating temperature sensitivity of soil organic matter based on incubation data: A comparative evaluation. Soil Biology and Biochemistry, 80, 127–135.

Liu L, Sayer E J, Deng M, Li P, Liu W, Wang X, Yang S, Huang J, Luo J, Su Y, Grünzweig J M, Jiang L, Hu S, Piao S. 2023. The grassland carbon cycle: Mechanisms, responses to global changes, and potential contribution to carbon neutrality. Fundamental Research, 3, 209–218. 

Liu X, Wang Y, Fu W, Yuan Z, Yu Q, Peng C, Koerner S E, Guo L. 2023. Growing season temperature and precipitation affect nutrient resorption in herbaceous species through a foliar stoichiometric control strategy. Plant and Soil, 493, 45–60.

Liu Y, Zhao X, Yang X, Liu W, Feng B, Sun S, Dong Q. 2025. Yak and Tibetan sheep mixed grazing enhances plant functional diversity in alpine grassland. Journal of Integrative Agriculture, 24, 936–948.

Luo Y, Zhou X. 2006. Soil Respiration and the Environment. Elsevier, Burlington.

Ma Y, McCormick M K, Szlavecz K, Filley T R. 2019. Controls on soil organic carbon stability and temperature sensitivity with increased aboveground litter input in deciduous forests of different forest ages. Soil Biology and Biochemistry, 134, 90–99.

Maire V, Alvarez G, Colombet J, Comby A, Despinasse R, Dubreucq E, Joly M, Lehours A-C, Perrier V, Shahzad T, Fontaine S. 2013. An unknown oxidative metabolism substantially contributes to soil CO2 emissions. Biogeosciences, 10, 1155–1167.

Melillo J M, Frey S D, DeAngelis K M, Werner W J, Bernard M J, Bowles F P, Pold G, Knorr M A, Grandy A S. 2017. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science, 358, 101–105.

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H, Teller E. 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.

Mori T. 2020. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biology and Biochemistry, 146, 107816.

Navarro D, Rosso M, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho P, Henrissat B, Berrin J. 2014. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Biotechnology for Biofuels, 7, 143.

Peng Y, Yan Y, Fan Z, Shi J, Huo C, Zhang Z, Wang X. 2025. Microbial associations with soil organic carbon pool composition and stabilization in eroding landscapes. Catena, 258, 109302.

Plante A F, McGill W B. 2002. Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil and Tillage Research, 66, 79–92.

Qiu Y, Zhang K, Zhao Y, Zhao Y, Wang B, Wang Y, He T, Xu X, Bai T, Zhang Y, Hu S. 2023. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. mLife, 2, 389–400.

Qu Q, Deng L, Shangguan Z, Sun J, He J, Wang K, Zhou Z, Li J, Penuelas J. 2024. Belowground C sequestrations response to grazing exclusion in global grasslands: Dynamics and mechanisms. Agriculture Ecosystems and Environment, 360, 108771.

Rousk J, Frey S D, Bååth E. 2012. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Global Change Biology, 18, 3252–3258.

Schädel C, Beem-Miller J, Aziz Rad M, Crow S E, Hicks Pries C E, Ernakovich J, Hoyt A M, Plante A, Stoner S, Treat C C, Sierra C A. 2020. Decomposability of soil organic matter over time: The Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 12, 1511–1524.

Schalk F, Gostinčar C, Kreuzenbeck N B, Conlon B H, Sommerwerk E, Rabe P, Burkhardt I, Krüger T, Kniemeyer O, Brakhage A, Gunde-Cimerman N, de Beer Z D, Dickschat J S, Poulsen M, Beemelmanns C. 2021. The termite fungal cultivar Termitomyces combines diverse enzymes and oxidative reactions for plant biomass conversion. mBio, 12, e0355120.

Smith P, House J I, Bustamante M, Sobocká J, Harper R, Pan G, West P C, Clark J M, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo M F, Elliott J A, McDowell R, Griffiths R I, Asakawa S, Bondeau A, Jain A K, Meersmans J, et al. 2016. Global change pressures on soils from land use and management. Global Change Biology, 22, 1008–1028.

Steinweg J M, Dukes J S, Paul E A, Wallenstein M D. 2013. Microbial responses to multi-factor climate change: Effects on soil enzymes. Frontiers in Microbiology, 4, 00146.

Tang Y, Zhou C, Chen K, Xing S, Shi H, Li C, Wang Y, Cui X, Niu H, Ji B, Zhang J. 2025. Grazing exclusion enriches arbuscular mycorrhizal fungal communities and improves soil organic carbon sequestration in the alpine steppe of northern Xizang. Journal of Integrative Agriculture, 24, 913–924.

Tao F, Huang Y, Hungate B A, Manzoni S, Frey S D, Schmidt M W I, Reichstein M, Carvalhais N, Ciais P, Jiang L, Lehmann J, Wang Y, Houlton B Z, Ahrens B, Mishra U, Hugelius G, Hocking T D, Lu X, Shi Z, Viatkin K, et al. 2023. Microbial carbon use efficiency promotes global soil carbon storage. Nature, 618, 981–985.

Tian J, Zong N, Hartley I P, He N, Zhang J, Powlson D, Zhou J, Kuzyakov Y, Zhang F, Yu G, Dungait J A J. 2021. Microbial metabolic response to winter warming stabilizes soil carbon. Global Change Biology, 27, 2011–2028.

Treseder K, Lennon J. 2015. Fungal traits that drive ecosystem dynamics on land. Microbiology and Molecular Biology Reviews, 79, 243–262.

Trumbore S E. 1997. Potential responses of soil organic carbon to global environmental change. Proceedings of the National Academy of Sciences of the United States of America, 94, 8284–8291.

Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707.

Wang B, Wu L, Chen D, Wu Y, Hu S, Li L, Bai Y. 2020. Grazing simplifies soil micro-food webs and decouples their relationships with ecosystem functions in grasslands. Global Change Biology, 26, 960–970.  

Wang H, Li Y Z, He Y, Chen H Y H, Liu X, Gao Y, Zhu W, Xu J, Li Y J, Chen Z, Sun X. 2023. Grazing exclusion facilitates more rapid ecosystem carbon sequestration of degraded grasslands in humid than in arid regions. Agriculture Ecosystems and Environment, 353, 108553.

Wang J, Liu Y, Cao W, Li W, Wang X, Zhang D, Shi S, Pan D, Liu W. 2020b. Effects of grazing exclusion on soil respiration components in an alpine meadow on the north-eastern Qinghai-Tibet Plateau. Catena, 194, 104750.

Wang J, Ren C J, Feng X, Zhang L, Doughty R, Zhao F. 2020a. Temperature sensitivity of soil carbon decomposition due to shifts in soil extracellular enzymes after afforestation. Geoderma, 374, 114426.

Wang L, Luan L, Hou F, Siddique K H M. 2020. Nexus of grazing management with plant and soil properties in northern China grasslands. Scientific Data, 7, 39.

White R P, Murray S, Rohweder M. 2000. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington.

Wu Y, Chen D, Delgado-Baquerizo M, Liu S, Wang B, Wu J, Hu S, Bai Y. 2022. Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers. Soil Biology and Biochemistry, 168, 108629.

Xiong D, Shi P, Zhang X, Zou C B. 2016. Effects of grazing exclusion on carbon sequestration and plant diversity in grasslands of China-a meta-analysis. Ecological Engineering, 94, 647–655.

Xiang D, Wang G, Tian J, Li W. 2023. Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments. Nature Communications, 14, 2171.

Xiang X, Yao T, Man B, Lin D, Li C. 2024. Global hotspots and trends in microbial-mediated grassland carbon cycling: A bibliometric analysis. Frontiers in Microbiology, 15, 1377338.

Xu T, White L, Hui D, Luo Y. 2006. Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20, GB2007.

Xu X, Shi Z, Li D, Zhou X, Sherry R A, Luo Y. 2015. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Global Change Biology, 21, 3846–3853.

Yang Y, Dou Y, Wang B, Xue Z, Wang Y, An S, Chang S X. 2023. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta, 2, e66.

Yang Y, Li T, Wang Y, Dou Y, Cheng H, Liu L, An S. 2021. Linkage between soil ectoenzyme stoichiometry ratios and microbial diversity following the conversion of cropland into grassland. Agriculture Ecosystems and Environment, 314, 107418.

Yu P, Tang X, Zhang A, Fan G, Liu S. 2019. Responses of soil specific enzyme activities to short-term land use conversions in a salt-affected region, northeastern China. Science of the Total Environment, 687, 939–945.

Yu Z, Zhang C, Liu X, Lei J, Zhang Q, Yuan Z, Peng C, Koerner S E, Xu J, Guo L. 2024. Responses of C:N:P stoichiometric correlations among plants, soils and microorganisms to warming: A meta-analysis. Science of the Total Environment, 912, 168827.

Zhang H, Zhou Z. 2018. Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China. Forest Ecosystems, 5, 17.

Zhang Q, Qin W, Feng J, Li X, Zhang Z, He J, Schimel J P, Zhu B. 2023. Whole-soil-profile warming does not change microbial carbon use efficiency in surface and deep soils. Proceedings of the National Academy of Sciences of the United States of America, 120, e2302190120.

Zhang Z, Hu L, Liu Y, Guo Y, Tang S, Ren J. 2025. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components. Journal of Integrative Agriculture, 24, 827–844.

[1] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[2] Zhian Dai, Rongwei Yuan, Xiangxia Yang, Hanxiao Xi, Ma Zhuo, Mi Wei. Salinity-responsive key endophytic bacteria in the propagules of Kandelia obovata enhance salt tolerance in rice[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1738-1753.
[3] Zongpeng Zhang, Lijuan Hu, Yating Liu, Yixuan Guo, Shiming Tang, Jie Ren. Land use shapes the microbial community structure by altering soil aggregates and dissolved organic matter components[J]. >Journal of Integrative Agriculture, 2025, 24(3): 827-844.
[4] Xiangxia Yang, Tingting Chen, Libo Xiang, Limin Liu, Mi Wei. Impact of a new pesticide on rhizosphere microbes and plant health: Case study of Y17991 against sharp eyespot in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(2): 769-785.
[5] Shuo Yuan, Ruonan Li, Yinjie Zhang, Hao'an Luan, Jiwei Tang, Liying Wang, Hongjie Ji, Shaowen Huang.

Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2083-2098.

[6] Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu. The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3592-3609.
[7] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[8] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[9] LI Wei-hua, CHEN Peng, WANG Yu-zhu, LIU Qi-zhi. Characterization of the microbial community response to replant diseases in peach orchards[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1082-1092.
[10] QU Zheng, LI Yue-han, XU Wei-hui, CHEN Wen-jing, HU Yun-long, WANG Zhi-gang. Different genotypes regulate the microbial community structure in the soybean rhizosphere[J]. >Journal of Integrative Agriculture, 2023, 22(2): 585-597.
[11] WANG Dong, XI Yue, SHI Xiao-yan, GUO Chao-li, ZHONG Yu-jie, SONG Chao, GUAN Yu, HUANG Lu, YANG Qi-feng, LI Feng-min. Effects of residual plastic film on crop yield and soil fertility in a dryland farming system[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3783-3791.
[12] ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen. Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2119-2133.
[13] Muhammad QASWAR, Waqas AHMED, HUANG Jing, LIU Kai-lou, ZHANG Lu, HAN Tian-fu, DU Jiang-xue, Sehrish ALI, Hafeez UR-RAHIM, HUANG Qing-hai, ZHANG Hui-min. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil [J]. >Journal of Integrative Agriculture, 2022, 21(7): 2134-2144.
[14] WU Hong-liang, CAI An-dong, XING Ting-ting, HUAI Sheng-chang, ZHU Ping, HAN Xiao-zeng, XU Ming-gang, LU Chang-ai. Integrated management of crop residue and nutrients enhances new carbon formation by regulating microbial taxa and enzymes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1772-1785.
[15] LIU Han-wen, ZHANG Xiao-ke, ZHANG Gui-zong, KOU Xin-chang, LIANG Wen-ju. Partial organic substitution weakens the negative effect of chemical fertilizer on soil micro-food webs[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3037-3050.
No Suggested Reading articles found!