Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Legume introduction enhances rhizosphere phosphorus availability through organic acid-induced dissolution and microbial transformation: Insights from an 11-year field experiment in grassland

Meiqi Guo1, 3, Tongtian Guo1, 3, Chuan Guo1, 3, Jiqiong Zhou2, Gaowen Yang1, 3#, Yingjun Zhang1, 3#

1College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.

2Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China

3Key Laboratory of Grassland Management and Rational Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

 Highlights 

· Legume increase available P via increasing organic acid and genes for P activation

· P addition reduces microbial P transformation

· N addition accelerates depletion of available P

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

虽然施用化学肥料能直接恢复退化生态系统的土壤肥力,但通过引入豆科植物实现植被恢复可能是更可持续的管理策略。然而,豆科植物引入如何影响土壤磷(P)转化机制,以及这些过程如何响应施肥,目前仍知之甚少。通过阐明这些机制,本研究旨在为草地可持续磷管理策略提供科学依据,最终促进生态系统生产力和韧性的提升。通过对一项11年田间试验的单次采样,我们研究了豆科植物(Medicago falcata L.)的引入如何影响根际土壤磷组分,包括单独引入以及与氮肥(N5 g m-² yr-¹)和磷肥(3.2 g m-² yr-¹)联合施用的情况。研究发现,豆科引入通过提高有机酸浓度和微生物磷需求量(用微生物生物量氮磷比值来表征)促进了根际土壤磷的活化。这导致土壤库发生了显著变化:易溶性无机磷增加97.4%,中等易溶性无机磷减少22.9%,中等易溶性有机磷减少9.6%,难溶性磷减少3.7%。相比之下,氮肥施用虽通过降低土壤pH值和增强无机磷溶解相关基因丰度,促进了中等易溶性无机磷的溶解及难溶性磷的溶解,但也导致易溶性磷库减少10.6%。磷肥施用增加了易溶性无机磷、中等易溶性无机磷和难溶性磷的含量,但抑制了微生物磷转化过程。值得注意的是,豆科植物的引入既减轻了氮肥施用对生物可利用磷的负面影响,又缓解了磷肥施用对微生物磷矿化基因的抑制作用。通过定量揭示施肥和豆科引入背景下各磷组分的转化格局,本研究表明,在天然草地中引入豆科植物可通过优先维持和激活天然草原的微生物功能来促进磷循环,减少对化肥的依赖,促进生态系统可持续发展,为草原管理和退化草原修复提供新的科学见解和实践方向。



Abstract  

While chemical fertilization offers a direct solution to restore soil fertility in degraded ecosystem, revegetation through legume introduction represents a more sustainable management strategy. However, the mechanisms by which legume introduction influence soil phosphorus (P) transformation, and how these processes respond to nutrient fertilization, remain poorly understood. Using one-time sampling from an 11-year field experiment, we investigated how the introduction of a legume (Medicago falcata L.) influenced rhizosphere soil P fractions, both alone and in combination with nitrogen (N; 5 g m-² yr-¹) and P (3.2 g m-² yr-¹) fertilization. Our findings reveal that legume introduction stimulated the mobilization of soil P by increasing organic acid concentrations and microbial P demand, as indicated by the microbial biomass N:P ratio. This resulted in significant changes in P pools, marked by a 97.4% increase in labile inorganic P, a 22.9% decrease in moderately labile inorganic P, a 9.6% decrease in moderately labile organic P, and a 3.7% decrease in non-labile P pool. In contrast, while N fertilization promoted the solubilization of moderately labile inorganic P and the dissolution of the non-labile P pool by lowering soil pH and enhancing the abundance of genes for inorganic P solubilization, it ultimately led to a 10.6% depletion of the labile P pool. Phosphorus fertilization increased labile inorganic P, moderately labile inorganic P, and non-labile P, yet it inhibited microbial P transformation processes. Importantly, legume introduction mitigated the negative impacts of N fertilization on bioavailable P and the negative effects of P fertilization on microbial P mineralization genes. These findings suggest that legume introduction is a sustainable practice to stimulate P cycling in natural grassland, highlighting the importance of activating microbial functions in grassland management and restoration. 

Keywords:  grassland       legume introduction       nitrogen fertilization       phosphorus fertilization       phosphorus fractions  
Online: 08 December 2025  
Fund: 

The study was funded by the National Natural Science Foundation of China (32271771 and32192462), and the earmarked fund for CARS (CARS-34).

About author:  Meiqi Guo, E-mail: b20213241026@cau.edu.cn; Correspondence Yingjun Zhang E-mail: zhangyj@cau.edu.cn; Gaowen Yang, E-mail: yanggw@cau.edu.cn

Cite this article: 

Meiqi Guo, Tongtian Guo, Chuan Guo, Jiqiong Zhou, Gaowen Yang, Yingjun Zhang. 2025. Legume introduction enhances rhizosphere phosphorus availability through organic acid-induced dissolution and microbial transformation: Insights from an 11-year field experiment in grassland. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.12.003

Achor S, Aravis C, Heaney N, Odion E, Lin C. 2020. Response of organic acid-mobilized heavy metals in soils to biochar application. Geoderma, 378, 114628.

Bai Y, Wu J, Clark C M, Naeem S, Pan Q, Huang J, Zhang L, Han X. 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology, 16, 358-372.

Bardgett R D, Bullock J M, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, L. Fry E, Johnson D, Lavallee J M, Le Provost G, Luo S, Png K, Sankaran M, Hou X, Zhou H, Ma L, Ren W, Li X, et al. 2021. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735.

Baziramakenga R, Simard R R, Leroux G D. 1995. Determination of organic-acids in soil extracts by ion chromatography. Soil Biology and Biochemistry, 27, 349-356.

Bharadwaj D P, Alstrom S, Lundquist P-O. 2012. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza, 22, 437-447.

Brookes P C, Landman A, Pruden G, Jenkinson D S. 1985. Chloroform fumigation and the release of soil-nitrogen - a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837-842.

Brookes P C, Powlson D S, Jenkinson D S. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 14, 319-329.

Bunemann E K. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus - A review. Soil Biology and Biochemistry, 89, 82-98.

Catford J A, Shepherd H E R, Tennant P, Tilman D. 2023. Higher plant colonisation and lower resident diversity in grasslands more recently abandoned from agriculture. Journal of Ecology, 111, 2424-2440.

Chen C, Xiao W, Chen H Y H. 2023. Mapping global soil acidification under N deposition. Global Change Biology, 29, 4652-4661.

Chen S, Waghmode T R, Sun R, Kuramae E E, Hu C, Liu B. 2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome, 7, 136.

Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C, Brookes P C, Xu J. 2019. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal, 14, 757-770.

Dong R, Hu W, Bu L, Cheng H, Liu G. 2024. Legume cover crops alter soil phosphorus availability and microbial community composition in mango orchards in karst areas. Agriculture Ecosystems & Environment, 364, 108906.

Epihov D Z, Saltonstall K, Batterman S A, Hedin L O, Hall J S, van Breugel M, Leake J R, Beerling D J. 2021. Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022241118.

Frossard E, Condron L M, Oberson A, Sinaj S, Fardeau J C. 2000. Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15-23.

Frostegard A, Baath E, Tunlid A. 1993. Shifts in the structure of microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biology and Biochemistry, 25, 723-730.

Frostegard A, Tunlid A, Baath E. 2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 43, 1621-1625.

Gao Y, Tian Q, Shi F, Li L, Zhang W. 2011. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil. Chinese Journal of Plant Ecology, 35, 632-640.

Gou X, Reich P B, Qiu L, Shao M, Wei G, Wang J, Wei X. 2023. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. Global Change Biology, 29, 4028-4043.

Grace J B, Schoolmaster D R, Jr., Guntenspergen G R, Little A M, Mitchell B R, Miller K M, Schweiger E W. 2012. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere, 3, 73.

Hedley M J, Stewart J W B, Chauhan B S. 1982. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory inculbations. Soil Science Society of America Journal, 46, 970-976.

Henintsoa M, Becquer T, Rabeharisoa L, Gerard F. 2017. Geochemical and microbial controls of the effect of citrate on phosphorus availability in a ferralsol. Geoderma, 291, 33-39.

Hou E, Chen C, Kuang Y, Zhang Y, Heenan M, Wen D. 2016. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils. Global Biogeochemical Cycles, 30, 1300-1309.

Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.

Hu M, Le Y, Sardans J, Yan R, Zhong Y, Sun D, Tong C, Penuelas J. 2023. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands. Global Change Biology, 29, 276-288.

Hu Y, Chen J, Hui D, Wang Y-P, Li J, Chen J, Chen G, Zhu Y, Zhang L, Zhang D, Deng Q. 2022. Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. Global Change Biology, 28, 3605-3619.

Inoue M, Fujimori M, Cai H 2007. Forage Crops. In: Kole C ed. Technical Crops. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 51-75.

Jiang X, Bol R, Willbold S, Vereecken H, Klumpp E. 2015. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil. Biogeosciences, 12, 6443-6452.

Joergensen R G. 2021. Phospholipid fatty acids in soil—drawbacks and future prospects. Biology and Fertility of Soils, 58, 1-6.

Jones D L. 1998. Organic acids in the rhizosphere – a critical review. Plant and Soil, 205, 25-44.

Lambers H, Shane M W, Cramer M D, Pearse S J, Veneklaas E J. 2006. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98, 693-713.

Liao X, Zhao J, Yi Q, Li J, Li Z, Wu S, Zhang W, Wang K. 2023. Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agriculture, Ecosystems & Environment, 343, 108281.

Lipton D S, Blanchar R W, Blevins D G. 1987. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago-sativa L seedings. Plant Physiology, 85, 315-317.

Liu H, Wang R, Wang H, Cao Y, Dijkstra F A, Shi Z, Cai J, Wang Z, Zou H, Jiang Y. 2019. Exogenous phosphorus compounds interact with nitrogen availability to regulate dynamics of soil inorganic phosphorus fractions in a meadow steppe. Biogeosciences, 16, 4293-4306.

Liu W, Liu L, Yang X, Deng M, Wang Z, Wang P, Yang S, Li P, Peng Z, Yang L, Jiang L. 2021. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 27, 3939-3950.

Lu Y, An B, Pan Q, Liu W, Sun J, Wang J, Qi Z, Li C, Dou S, Han X. 2025. Nutrient amendment promotes vegetation restoration and improves ecosystem carbon uptake capacity in a degraded grassland. Agriculture Ecosystems & Environment, 388.

Luo G, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo S, Shen Q. 2017. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biology and Fertility of Soils, 53, 375-388.

Luo X, Liu N, Lambers H, Cai H, Hou E, Huang Y, Jian S, Kuang Y, Wen D, Zhang L. 2024. Plant invasion alters soil phosphorus cycling on tropical coral islands: Insights from Wollastonia biflora and Chromolaena odorata invasions. Soil Biology and Biochemistry, 193, 109412.

O'Mara F P. 2012. The role of grasslands in food security and climate change. Annals of Botany, 110, 1263-1270.

Oburger E, Leitner D, Jones D L, Zygalakis K C, Schnepf A, Roose T. 2011. Adsorption and desorption dynamics of citric acid anions in soil. European Journal of Soil Science, 62, 733-742.

Pantigoso H A, Manter D K, Vivanco J M. 2020. Differential Effects of Phosphorus Fertilization on Plant Uptake and Rhizosphere Microbiome of Cultivated and Non-cultivated Potatoes. Microbial Ecology, 80, 169-180.

R Core Team R. 2024. R: A Language and Environment for Statistical Computing (4.3.3) [computer software]. R Foundation for Statistical Computing.

Raza S, Miao N, Wang P, Ju X, Chen Z, Zhou J, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Global Change Biology, 26, 3738-3751.

Rossolini G M, Schippa S, Riccio M L, Berlutti F, Macaskie L E, Thaller M C. 1998. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cellular and Molecular Life Sciences, 54, 833-850.

Sasse J, Martinoia E, Northen T. 2018. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends in Plant Scicience, 23, 25-41.

Schielzeth H, Nakagawa S. 2013. Nested by design: model fitting and interpretation in a mixed model era. Methods in Ecology and Evolution, 4, 14-24.

Siles J A, Starke R, Martinovic T, Parente Fernandes M L, Orgiazzi A, Bastida F. 2022. Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining. Soil Biology and Biochemistry, 174, 108826.

Song L, Gong J, Li X, Ding Y, Shi J, Zhang Z, Zhang W, Li Y, Zhang S, Dong J. 2022. Plant phosphorus demand stimulates rhizosphere phosphorus transition by root exudates and mycorrhizal fungi under different grazing intensities. Geoderma, 423, 115964.

Tissen H, Moir J O 2007. Characterization of available P by sequential extraction. In: Carter MR ed. Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, USA. pp. 293-306.

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert L B, Handa Y, Herr J R, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers P J, Masclaux F G, Murat C, et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, 110, 20117-20122.

Toljander J F, Lindahl B D, Paul L R, Elfstrand M, Finlay R D. 2007. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295-304.

Wang R, Yang J, Liu H, Sardans J, Zhang Y, Wang X, Wei C, Lü X, Dijkstra F A, Jiang Y, Han X, Peñuelas J. 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineralbound soil phosphorus in grasslands. Ecology, 103, e3616.

Wang Y, Lambers H. 2020. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant and Soil, 447, 135-156.

Wang Y, Luo D, Xiong Z, Wang Z, Gao M. 2023. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil and Tillage Research, 225, 105543.

Wei Y, Zhao Y, Shi M, Cao Z, Lu Q, Yang T, Fan Y, Wei Z. 2018. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresource Technology, 247, 190-199.

Wu J, Joergensen R G, Pommerening B, Chaussod R, Brookes P C. 1990. Measurement of soil microbial biomass by fumigation extraction C - an automated procedure. Soil Biology and Biochemistry, 22, 1167-1169.

Xu H, Huang X, Chen J, Chen Y, Wang Y, Wu X, Wang J, He H, Dang P, Liu T, He X, Yan W. 2023. Intercropping with legumes alleviates soil N limitation but aggravates P limitation in a degraded agroecosystem as shown by ecoenzymatic stoichiometry. Soil Biology and Biochemistry, 187, 109210.

Yao X, Hui D, Hou E, Xiong J, Xing S, Deng Q. 2023. Differential responses and mechanistic controls of soil phosphorus transformation in Eucalyptus plantations with N fertilization and introduced N2fixing tree species. New Phytologist, 237, 2039-2053.

Yu Q, Hagedorn F, Penuelas J, Sardans J, Tan X, Yan Z, He C, Ni X, Feng Y, Zhu J, Ji C, Tang Z, Li M H, Fang J. 2024. Differential Responses of Soil Phosphorus Fractions to Nitrogen and Phosphorus Fertilization: A Global MetaAnalysis. Global Biogeochemical Cycles, 38.

Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P, Huang Q, Bai Y, Vivanco J M, Kowalchuk G A, Berendsen R L, Shen Q. 2018. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 6, 156.

Zeng M, de Vries W, Bonten L T C, Zhu Q, Hao T, Liu X, Xu M, Shi X, Zhang F, Shen J. 2017. Model-Based Analysis of the Long-Term Effects of Fertilization Management on Cropland Soil Acidification. Environmental Science & Technology, 51, 3843-3851.

Zeng Q, Peñuelas J, Sardans J, Zhang Q, Zhou J, Yue K, Chen Y, Yang Y, Fan Y. 2024. Keystone bacterial functional module activates P-mineralizing genes to enhance enzymatic hydrolysis of organic P in a subtropical forest soil with 5-year N addition. Soil Biology and Biochemistry, 192, 109383.

Zhang L, Zhou J, George T S, Limpens E, Feng G. 2022. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends in Plant Science, 27, 402-411.

Zhang Z, Guo W, Wang J, Lambers H, Yin H. 2023. Extraradical hyphae alleviate nitrogen depositioninduced phosphorus deficiency in ectomycorrhizadominated forests. New Phytologist, 239, 1651-1664.

Zhao J, Chen J, Beillouin D, Lambers H, Yang Y, Smith P, Zeng Z, Olesen J E, Zang H. 2022. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers. Nature Communications, 13, 4926.

Zhou J Q, Zhang F G, Huo Y Q, Wilson G W T, Cobb A B, Xu X X, Xiong X, Liu L, Zhang Y J. 2019. Following legume establishment, microbial and chemical associations facilitate improved productivity in degraded grasslands. Plant and Soil, 443, 273-292.

[1] Jiannan Xiao, Shikui Dong, Hao Shen, Ran Zhang, Hang Shi, Fencai He, Wei Li, Xiaoyan Li, Yu Li, Chengxiang Ding. Short-term P addition may improve the stimulating effects of N deposition on N2O emissions in alpine grasslands on the Qinghai-Tibet Plateau[J]. >Journal of Integrative Agriculture, 2025, 24(3): 900-912.
[2] Bo Pang, Lirong Zhao, Xingxing Ma, Jiangtao Hong, Ziyin Du, Xiaodan Wang. Vegetation patches modify the acquisition of nitrogen by plants and microorganisms in a degraded alpine steppe[J]. >Journal of Integrative Agriculture, 2025, 24(3): 925-935.
[3] Bing Han, Yicheng He, Jun Zhou, Yufei Wang, Lina Shi, Zhenrong Lin, Lu Yu, Wantong Zhang, Yiyi Geng, Xinqing Shao. Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow[J]. >Journal of Integrative Agriculture, 2025, 24(3): 815-826.
[4] Yuzhen Liu, Xinquan Zhao, Xiaoxia Yang, Wenting Liu, Bin Feng, Shengnan Sun, Quanmin Dong. Yak and Tibetan sheep mixed grazing enhances plant functional diversity in alpine grassland[J]. >Journal of Integrative Agriculture, 2025, 24(3): 936-948.
[5] Tong Li, Lizhen Cui, Yu Wu, Rajiv Pandey, Hongdou Liu, Junfu Dong, Weijin Wang, Zhihong Xu, Xiufang Song, Yanbin Hao, Xiaoyong Cui, Jianqing Du, Xuefu Zhang, Yanfen Wang. Unveiling and advancing grassland degradation research using a BERTopic modelling approach[J]. >Journal of Integrative Agriculture, 2025, 24(3): 949-965.
[6] Aiwen Li, Jinli Cheng, Dan Chen, Xinyi Chen, Yaruo Mao, Qian Deng, Bin Zhao, Wenjiao Shi, Zemeng Fan, John P. Wilson, Tianfei Dai, Tianxiang Yue, Qiquan Li. Changes in cropland soil inorganic carbon and its relationship with nitrogen fertilization and precipitation over the past 40 years in the Sichuan Basin, China[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4415-4429.
[7] Huifang Liu, Lingling Hou, Zhibiao Nan, Jikun Huang, Liufang Su. Herders’ willingness to accept compensation for grassland grazing ban in Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(1): 366-379.
[8] LI Dong-qing, ZHANG Ming-xue, LÜ Xin-xin, HOU Ling-ling. Does nature-based solution sustain grassland quality? Evidence from rotational grazing practice in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2567-2576.
[9] WANG Qiong, QIN Zhen-han, ZHANG Wei-wei, CHEN Yan-hua, ZHU Ping, PENG Chang, WANG Le, ZHANG Shu-xiang, Gilles COLINET. Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2720-2733.
[10] ZHOU Tian-yang, LI Zhi-kang, LI En-peng, WANG Wei-lu, YUAN Li-min, ZHANG Hao, LIU Li-jun, WANG Zhi-qin, GU Jun-fei, YANG Jian-chang. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1576-1592.
[11] YU Xiao-jing, CHEN Qi, SHI Wen-cong, GAO Zheng, SUN Xiao, DONG Jing-jing, LI Juan, WANG Heng-tao, GAO Jian-guo, LIU Zhi-guang, ZHANG Min. Interactions between phosphorus availability and microbes in a wheat–maize double cropping system: a reduced fertilization scheme[J]. >Journal of Integrative Agriculture, 2022, 21(3): 840-854.
[12] ZHANG Nai-yu, WANG Qiong, ZHAN Xiao-ying, WU Qi-hua, HUANG Shao-min, ZHU Ping, YANG Xue-yun, ZHANG Shu-xiang. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3626-3636.
[13] QI Dong-liang, HU Tian-tian, SONG Xue. Effects of nitrogen application rates and irrigation regimes on grain yield and water use efficiency of maize under alternate partial rootzone irrigation[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2792-2806.
[14] LI Zhen-wang, XIN Xiao-ping, TANG Huan, YANG Fan, CHEN Bao-rui, ZHANG Bao-hui. Estimating grassland LAI using the Random Forests approach and Landsat imagery in the meadow steppe of Hulunber, China[J]. >Journal of Integrative Agriculture, 2017, 16(02): 286-297.
[15] SUN Cheng-ming, ZHONG Xiao-chun, CHEN Chen, GU Ting, CHEN Wen. Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1638-1644.
No Suggested Reading articles found!