Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 900-912    DOI: 10.1016/j.jia.2024.05.024
Section 2: Drivers of grassland ecosystem changes Advanced Online Publication | Current Issue | Archive | Adv Search |
Short-term P addition may improve the stimulating effects of N deposition on N2O emissions in alpine grasslands on the Qinghai-Tibet Plateau
Jiannan Xiao1, Shikui Dong1, 2#, Hao Shen2, Ran Zhang2, Hang Shi2, Fencai He2, Wei Li1, Xiaoyan Li3, Yu Li4, Chengxiang Ding5

1 School of Environment, Beijing Normal University, Beijing 100875, China

2 School of Grassland Science, Beijing Forestry University, Beijing 100083, China 

3 School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

4 School of Public Administration, Chongqing Technology and Business University, Chongqing 400067, China

5 Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining 810016, China

 Highlights 
●   N addition increases N2O emissions consistently.
●   P addition alone shows neutral effects on N2O emissions. 
●   P addition cannot alleviate the stimulation of N2O emissions by N addition.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  氮添加通常会刺激氧化亚氮排放,而磷添加对氧化亚氮排放的影响尚无定论,且氧化亚氮排放的潜在机制仍不清楚。我们在青藏高原三种典型高寒草地,即高寒草甸、高寒草原和高寒人工草地上,进行了为期两年的野外实验,以探究氮和磷添加对氧化亚氮排放的影响。结果显示,在三个类型的高寒草地上,单独添加氮均促进了氧化亚氮的排放,而单独添加磷对氧化亚氮排放均无显著作用。氮的添加直接导致高寒草甸氧化亚氮排放的增加,在高寒草原则是通过降低土壤pH值,在人工草地是通过降低硝化基因丰度间接促进氧化亚氮排放。氮和磷共同添加促进了高寒草甸和高寒草原的氧化亚氮排放,但仅在高寒草甸表现出交互作用。磷的添加主要通过促进高寒草甸的植物生长来增加由氮添加导致的氧化亚氮排放。总之,我们的研究结果表明,短期磷的添加不能缓解高寒草地生态系统中氮沉降对氧化亚氮排放的刺激作用,甚至可能进一步加剧氧化亚氮排放。

Abstract  

The response of N2O emissions to nitrogen (N) addition is usually positive, but its response to phosphorus (P) addition varies, and the underlying mechanisms for the changes in N2O emissions remain unclear.  We conducted field studies to examine the response of N2O emissions to N and P addition over two years in three typical alpine grasslands, alpine meadow (AM), alpine steppe (AS), and alpine cultivated grassland (CG) on the Qinghai-Tibet Plateau (QTP).  Our results showed consistent increases in N2O emissions under N addition alone or with P addition, and insignificant change in N2O emissions under P addition alone in all three grasslands.  N addition increased N2O emissions directly in AM, by lowering soil pH in AS, and by lowering abundance of denitrification genes in CG.  N and P co-addition increased N2O emissions in AM and AS but only showed an interactive effect in AM.  P addition enhanced the increase in N2O emissions caused by N addition mainly by promoting plant growth in AM.  Overall, our results illustrate that short-term P addition cannot alleviate the stimulation of N2O emissions by N deposition in alpine grassland ecosystems, and may even further stimulate N2O emissions.

Keywords:  Tibetan alpine grassland       N2O emissions        nitrogen        phosphorus        N-cycling functional gene  
Received: 19 February 2024   Accepted: 10 April 2024
Fund: This study was funded by the National Key R&D Program of China (2021YFE0112400 and 2023YFF1304303) and the National Natural Science Foundation of China (32361143870 and 32101315).
About author:  Jiannan Xiao, E-mail: xjn1009@163.com; #Correspondence Shikui Dong, E-mail: dongshikui@bjfu.edu.cn

Cite this article: 

Jiannan Xiao, Shikui Dong, Hao Shen, Ran Zhang, Hang Shi, Fencai He, Wei Li, Xiaoyan Li, Yu Li, Chengxiang Ding. 2025. Short-term P addition may improve the stimulating effects of N deposition on N2O emissions in alpine grasslands on the Qinghai-Tibet Plateau. Journal of Integrative Agriculture, 24(3): 900-912.

Abalos D, De Deyn G B, Kuyper T W, van Groenigen J W. 2014. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Global Change Biology20, 265–275.

Abalos D, van Groenigen J W, De Deyn G B. 2018. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Global Change Biology24, e248-e258.

Aronson E L, Goulden M L, Allison S D. 2019. Greenhouse gas fluxes under drought and nitrogen addition in a Southern California grassland. Soil Biology and Biochemistry131, 19–27.

Basto S, Thompson K, Phoenix G, Sloan V, Leake J, Rees M. 2015. Long-term nitrogen deposition depletes grassland seed banks. Nature Communications6, 6185.

Butterbach-Bahl K. 2014. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society (B: Biological Sciences), 368, 20130122.

Chen H, Gurmesa G A, Zhang W, Zhu X, Zheng M, Mao Q, Zhang T, Mo J. 2016. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Functional Ecology30, 305–313.

Cheng Y, Wang J, Chang S X, Cai Z, Müller C, Zhang J. 2019. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environmental Pollution244, 608–616.

Cheng Y, Zhang J B, Wang J, Cai Z C, Wang S Q. 2015. Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions. Journal of Plant Nutrition and Soil Science178, 370–373.

Cui P, Fan F, Yin C, Song A, Huang P, Tang Y, Zhu P, Peng C, Li T, Wakelin S A, Liang Y. 2016. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology and Biochemistry93, 131–141.

Crutzen P J. 1983. Atmospheric interactions–homogeneous gas reactions of C, N and S containing compounds. In: Bolin B, Cook RB, eds., The Major Biogeochemical Cycles and Their Interactions. Wiley, New York. pp. 67–112.

Dong S K, Gao H W, Xu G C, Hou X Y, Long R J, Kang M Y, Lassoie J P, 2007. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environmental Conservation34, 246–254.

Dong S K, Li J P, Li X Y, Wen L, Zhu L, Li Y Y, Ma Y S, Shi J J, Dong Q M. 2010. Application of design theory for restoring the “black beach” degraded rangeland at the head water areas of the Qinghai-Tibetan Plateau. African Journal of Agricultural Research5, 3542–3552.

Dong S K, Li Y, Ganjurjav H, Gao Q Z, Gao X X, Zhang J, Yan Y L, Zhang Y, Liu S L, Hu G Z, Wang X X, Wu H B, Li S. 2020. Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. AgricultureEcosystems & Environment303, 107111.

Du Y, Ke X, Li J, Wang Y, Cao G, Guo X, Chen K. 2021. Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis. Catena199, 105105.

Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B, Smith J E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters10, 1135–1142.

Enwall K, Philippot L, Hallin S. 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology71, 8335–8343.

Finn J A, Kirwan L, Connolly J, Sebastià M T, Helgadottir A, Baadshaug O H, Bélanger G, Black A, Brophy C, Collins R P, Čop J, Dalmannsdóttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg B E, Ghesquiere A, Golinska B, Golinski P, Grieu P, et al. 2013. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. Journal of Applied Ecology50, 365–375.

Firestone M. Davidson E. 1989. Microbiological basis of NO and N2O production and consumption in soil. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere47, 7–21.

Foggin J M. 2008. Depopulating the Tibetan grasslands: National policies and perspectives for the future of Tibetan herders in Qinghai Province, China. Mountain Research & Development28, 26–31.

Geng F, Li K, Liu X, Gong Y, Yue P, Li Y, Han W. 2019. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. Catena182, 104100.

Groffman P M, Brumme R, Butterbach-Bahl K, Dobbie K E, Mosier A R, Ojima D, Papen H, Parton W J, Smith K A, Wagner-Riddle C. 2000. Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles14, 1061–1070.

Gu X, Wang Y, Laanbroek H J, Xu X, Song B, Huo Y, Chen S, Li L, Zhang L J G. 2019. Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma341, 18–25.

Han Y H, Dong S K, Zhao Z Z, Sha W, Li S, Shen H, Xiao J N, Zhang J, Wu X, Jiang X M, Zhao J B, Liu S L, Dong Q M, Zhou H K, Yeomans J C. 2019. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma343, 263–268.

He M, Dijkstra F A. 2015. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biology and Biochemistry82, 99–106.

Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, Bizouard F, Germon J, Philippot L. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: Insight into the role of root exudates. Environmental Microbiology10, 3082–3092.

IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.

Jiang J, Wang Y P, Yang Y, Yu M, Wang C, Yan J. 2019. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil440, 523–537.

Li J, Wang G, Yan B, Liu G. 2020. The responses of soil nitrogen transformation to nitrogen addition are mainly related to the changes in functional gene relative abundance in artificial Pinus tabulaeformis forests. Science of the Total Environment723, 137679.

Li S, Dong S, Shen H, Han Y, Zhang J, Xu Y, Gao X, Yang M, Li Y, Zhao Z, Liu S, Zhou H, Dong Q, Yeomans J C. 2019. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Science of the Total Environment688, 1405–1412.

Li X P, Zhao C Z, Ren Y, Zhang J, Lei L. 2018. Fractal root systems of Elymus nutans under different density conditions in Gahai Wetland. Acta Ecologica Sinica38, 1176–1182. (in Chinese)

Li Y Y, Dong S K, Liu S L, Zhou H K, Gao Q Z, Cao G M, Wang X X, Su X K, Zhang Y, Tang L, Zhao H D, Wu X Y. 2015. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry80, 306–314.

Lin X, Wang S, Ma X, Xu G, Luo C, Li Y, Jiang G, Xie Z. 2009. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biology and Biochemistry41, 718–725.

Lü C, Tian H. 2007. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research112, D22S05.

Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, Liu Y, Feng H, Du G, Ma X, Le Roux X. 2016. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biology and Biochemistry101, 195–206.

Mehnaz K R, Corneo P E, Keitel C, Dijkstra F A. 2019. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biology and Biochemistry134, 175–186.

Mehnaz K R, Dijkstra F A. 2016. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma284, 34–41.

Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A. 2010. Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science and Plant Nutrition56, 782–788.

Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A. 2012. Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biology and Fertility of Soils49, 13–21.

Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J. 2014. Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biology and Fertility of Soils50, 45–51.

Mori T, Yokoyama D, Kitayama K. 2016. Contrasting effects of exogenous phosphorus application on N2O emissions from two tropical forest soils with contrasting phosphorus availability. Springerplus5, 1237.

Mori T, Wachrinrat C, Staporn D, Meunpong P, Suebsai W, Matsubara K, Boonsri K, Lumban W, Kuawong M, Phukdee T, Srifai J, Boonman K. 2017. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agriculture and Natural Resources51, 91–95.

Morkved P T. 2007. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biology and Biochemistry39, 2048–2057.

Niklaus P A, Le Roux X, Poly F, Buchmann N, Scherer-Lorenzen M, Weigelt A, Barnard R L. 2016. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia181, 919–930.

Niklaus P A, Wardle D A, Tate K R. 2006. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of Soils. Plant and Soil282, 83–98.

Orwin K H, Buckland S M, Johnson D, Turner B L, Smart S, Oakley S, Bardgett R D. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology98, 1074–1083.

Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens I A. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications4, 2934.

Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science326, 123–125.

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rex D, Clough T J, Richards K G, de Klein C, Morales S E, Samad M S, Grant J, Lanigan G J. 2018. Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems110, 135–149.

Rocca J D, Hall E K, Lennon J T, Evans S E, Waldrop M P, Cotner J B, Nemergut D R, Graham E B, Wallenstein M D. 2015. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. The ISME Journal9, 1693–1699.

Saggar S, Luo J, Giltrap D, Maddena M. 2009. Nitrous oxide emissions from temperature grasslands: Processes, measurements, modeling and mitigation. In: Sheldon A I, Barnhart E P, eds., Nitrous Oxide Emissions Research Progress. Novoa Science Publishers, New York, USA. p. 66.

Scott D A, Eckhoff K D, Baer S G. 2020. Plant diversity decreases potential nitrous oxide emissions from restored agricultural soil. Pedobiologia83, 150670.

Shi Y J, Wang J F, Ao Y N, Han J Y, Guo Z H, Liu X Y, Zhang J W, Mu C S, Le Roux X. 2021. Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland. Global Change Biology27, 4894–4908.

Sosa O A. 2018. Phosphorus redox reactions as pinch hitters in microbial metabolism. Proceedings of the National Academy of Sciences of the United States of America115, 7–8.

Tang Y, Yu G, Zhang X, Wang Q, Ge J, Liu S. 2018. Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Applied Soil Ecology124, 218–228.

Tang Y, Zhang X, Li D, Wang H, Chen F, Fu X, Fang X, Sun X, Yu G. 2016. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry103, 284–293.

Ullah B, Shaaban M, Ronggui H, Zhao J, Lin S. 2016. Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels. Journal of Integrative Agriculture15, 2865–2872.

Wang F, Li J, Wang X, Zhang W, Zou B, Neher D A, Li Z. 2014. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports4, 5615.

Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. 2018. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Science of the Total Environment619–620, 1530–1537.

Wei X, Reich P B, Hobbie S E, Kazanski C E. 2017. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Global Change Biology23, 4717–4727.

Wolf K, Veldkamp E, Homeier J, Martinson G O. 2011. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles25, GB4009.

Yan Y, Ganjurjav H, Hu G, Liang Y, Li Y, He S, Danjiu L, Yang J, Gao Q. 2018. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. AgricultureEcosystems & Environment265, 45–53.

Yang Y, Xiao Y, Li C, Wang B, Gao Y, Zhou G. 2021. Nitrogen addition, rather than altered precipitation, stimulates nitrous oxide emissions in an alpine steppe. Ecology and Evolution11, 15153–15163.

Yin M, Gao X, Tenuta M, Li L, Gui D, Li X, Zeng F. 2020. Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma375, 114511.

Zhang J, Han X. 2008. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment42, 291–302.

Zhang J, Müller C, Cai Z. 2015. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry84, 199–209.

Zhang W, Zhu X, Luo Y, Rafique R, Chen H, Huang J, Mo J. 2014. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species. Biogeosciences11, 4941–4951.

Zhang Y, Zhang N, Yin J, Yang F, Zhao Y, Jiang Z, Tao J, Yan X, Qiu Y, Guo H, Hu S. 2020. Combination of warming and N inputs increases the temperature sensitivity of soil N2O emission in a Tibetan alpine meadow. Science of the Total Environment704, 135450.

Zhao W, Zhang J B, Müller C, Cai Z. 2017. Effects of pH and mineralisation on nitrification in a subtropical acid forest soil. Soil Research56, 275–283.

Zhao Z Z, Dong S K, Jiang X M, Liu S L, Ji H Z, Li Y, Han Y H, Sha W. 2017. Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Science of the Total Environment592, 565–572.

Zheng M, Zhang T, Liu L, Zhu W, Zhang W, Mo J. 2016. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences13, 3503–3517.

Zhu G, Ju X, Zhang J, Müller C, Rees R M, Thorman R E, Sylvester-Bradley R. 2019. Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions. Biology and Fertility of Soils55, 603–615.

Zhu J X, Wang Q F, He N P, Smith M D, Elser J J, Du J Q, Yuan G, Yu G R, Yu Q. 2016. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation, Journal of Geophysical Research (Biogeosciences), 121, 1605–1616.

Zong N, Shi P, Song M, Zhang X, Jiang J, Chai X. 2016. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management57, 531–542.

[1] Zhenxiang Zhou, Paul C. Struik, Junfei Gu, Peter E. L. van der Putten, Zhiqin Wang, Jianchang Yang, Xinyou Yin. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2923-2940.
[2] Congcong Zhang, Han Wang, Guojie Nai, Lei Ma, Xu Lu, Haokai Yan, Meishuang Gong, Yuanyuan Li, Ying Lai, Zhihui Pu, Li Wei, Guiping Chen, Ping Sun, Baihong Chen, Shaoying Ma, Sheng Li. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4074-4092.
[3] LI Wen-qian, HAN Ming-ming, PANG Dang-wei, CHEN Jin, WANG Yuan-yuan, DONG He-he, CHANG Yong-lan, JIN Min, LUO Yong-li, LI Yong, WANG Zhen-lin. Characteristics of lodging resistance of high-yield winter wheat as affected by nitrogen rate and irrigation managements[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1290-1309.
[4] WU Ya-wei, ZHAO Bo, LI Xiao-long, LIU Qin-lin, FENG Dong-ju, LAN Tian-qiong, KONG Fan-lei, LI Qiang, YUAN Ji-chao. Nitrogen application affects maize grain filling by regulating grain water relations[J]. >Journal of Integrative Agriculture, 2022, 21(4): 977-994.
No Suggested Reading articles found!