Abalos D, De Deyn G B, Kuyper T W, van Groenigen J W. 2014. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Global Change Biology, 20, 265–275.
Abalos D, van Groenigen J W, De Deyn G B. 2018. What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands? Global Change Biology, 24, e248-e258.
Aronson E L, Goulden M L, Allison S D. 2019. Greenhouse gas fluxes under drought and nitrogen addition in a Southern California grassland. Soil Biology and Biochemistry, 131, 19–27.
Basto S, Thompson K, Phoenix G, Sloan V, Leake J, Rees M. 2015. Long-term nitrogen deposition depletes grassland seed banks. Nature Communications, 6, 6185.
Butterbach-Bahl K. 2014. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society (B: Biological Sciences), 368, 20130122.
Chen H, Gurmesa G A, Zhang W, Zhu X, Zheng M, Mao Q, Zhang T, Mo J. 2016. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Functional Ecology, 30, 305–313.
Cheng Y, Wang J, Chang S X, Cai Z, Müller C, Zhang J. 2019. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: A review. Environmental Pollution, 244, 608–616.
Cheng Y, Zhang J B, Wang J, Cai Z C, Wang S Q. 2015. Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions. Journal of Plant Nutrition and Soil Science, 178, 370–373.
Cui P, Fan F, Yin C, Song A, Huang P, Tang Y, Zhu P, Peng C, Li T, Wakelin S A, Liang Y. 2016. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biology and Biochemistry, 93, 131–141.
Crutzen P J. 1983. Atmospheric interactions–homogeneous gas reactions of C, N and S containing compounds. In: Bolin B, Cook RB, eds., The Major Biogeochemical Cycles and Their Interactions. Wiley, New York. pp. 67–112.
Dong S K, Gao H W, Xu G C, Hou X Y, Long R J, Kang M Y, Lassoie J P, 2007. Farmer and professional attitudes to the large-scale ban on livestock grazing of grasslands in China. Environmental Conservation, 34, 246–254.
Dong S K, Li J P, Li X Y, Wen L, Zhu L, Li Y Y, Ma Y S, Shi J J, Dong Q M. 2010. Application of design theory for restoring the “black beach” degraded rangeland at the head water areas of the Qinghai-Tibetan Plateau. African Journal of Agricultural Research, 5, 3542–3552.
Dong S K, Li Y, Ganjurjav H, Gao Q Z, Gao X X, Zhang J, Yan Y L, Zhang Y, Liu S L, Hu G Z, Wang X X, Wu H B, Li S. 2020. Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 303, 107111.
Du Y, Ke X, Li J, Wang Y, Cao G, Guo X, Chen K. 2021. Nitrogen deposition increases global grassland N2O emission rates steeply: A meta-analysis. Catena, 199, 105105.
Elser J J, Bracken M E S, Cleland E E, Gruner D S, Harpole W S, Hillebrand H, Ngai J T, Seabloom E W, Shurin J B, Smith J E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.
Enwall K, Philippot L, Hallin S. 2005. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 71, 8335–8343.
Finn J A, Kirwan L, Connolly J, Sebastià M T, Helgadottir A, Baadshaug O H, Bélanger G, Black A, Brophy C, Collins R P, Čop J, Dalmannsdóttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg B E, Ghesquiere A, Golinska B, Golinski P, Grieu P, et al. 2013. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. Journal of Applied Ecology, 50, 365–375.
Firestone M. Davidson E. 1989. Microbiological basis of NO and N2O production and consumption in soil. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, 47, 7–21.
Foggin J M. 2008. Depopulating the Tibetan grasslands: National policies and perspectives for the future of Tibetan herders in Qinghai Province, China. Mountain Research & Development, 28, 26–31.
Geng F, Li K, Liu X, Gong Y, Yue P, Li Y, Han W. 2019. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. Catena, 182, 104100.
Groffman P M, Brumme R, Butterbach-Bahl K, Dobbie K E, Mosier A R, Ojima D, Papen H, Parton W J, Smith K A, Wagner-Riddle C. 2000. Evaluating annual nitrous oxide fluxes at the ecosystem scale. Global Biogeochemical Cycles, 14, 1061–1070.
Gu X, Wang Y, Laanbroek H J, Xu X, Song B, Huo Y, Chen S, Li L, Zhang L J G. 2019. Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma, 341, 18–25.
Han Y H, Dong S K, Zhao Z Z, Sha W, Li S, Shen H, Xiao J N, Zhang J, Wu X, Jiang X M, Zhao J B, Liu S L, Dong Q M, Zhou H K, Yeomans J C. 2019. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma, 343, 263–268.
He M, Dijkstra F A. 2015. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biology and Biochemistry, 82, 99–106.
Henry S, Texier S, Hallet S, Bru D, Dambreville C, Chèneby D, Bizouard F, Germon J, Philippot L. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: Insight into the role of root exudates. Environmental Microbiology, 10, 3082–3092.
IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland.
Jiang J, Wang Y P, Yang Y, Yu M, Wang C, Yan J. 2019. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant and Soil, 440, 523–537.
Li J, Wang G, Yan B, Liu G. 2020. The responses of soil nitrogen transformation to nitrogen addition are mainly related to the changes in functional gene relative abundance in artificial Pinus tabulaeformis forests. Science of the Total Environment, 723, 137679.
Li S, Dong S, Shen H, Han Y, Zhang J, Xu Y, Gao X, Yang M, Li Y, Zhao Z, Liu S, Zhou H, Dong Q, Yeomans J C. 2019. Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Science of the Total Environment, 688, 1405–1412.
Li X P, Zhao C Z, Ren Y, Zhang J, Lei L. 2018. Fractal root systems of Elymus nutans under different density conditions in Gahai Wetland. Acta Ecologica Sinica, 38, 1176–1182. (in Chinese)
Li Y Y, Dong S K, Liu S L, Zhou H K, Gao Q Z, Cao G M, Wang X X, Su X K, Zhang Y, Tang L, Zhao H D, Wu X Y. 2015. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry, 80, 306–314.
Lin X, Wang S, Ma X, Xu G, Luo C, Li Y, Jiang G, Xie Z. 2009. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biology and Biochemistry, 41, 718–725.
Lü C, Tian H. 2007. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research, 112, D22S05.
Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, Liu Y, Feng H, Du G, Ma X, Le Roux X. 2016. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biology and Biochemistry, 101, 195–206.
Mehnaz K R, Corneo P E, Keitel C, Dijkstra F A. 2019. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil. Soil Biology and Biochemistry, 134, 175–186.
Mehnaz K R, Dijkstra F A. 2016. Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil. Geoderma, 284, 34–41.
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A. 2010. Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science and Plant Nutrition, 56, 782–788.
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A. 2012. Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. Biology and Fertility of Soils, 49, 13–21.
Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J. 2014. Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring. Biology and Fertility of Soils, 50, 45–51.
Mori T, Yokoyama D, Kitayama K. 2016. Contrasting effects of exogenous phosphorus application on N2O emissions from two tropical forest soils with contrasting phosphorus availability. Springerplus, 5, 1237.
Mori T, Wachrinrat C, Staporn D, Meunpong P, Suebsai W, Matsubara K, Boonsri K, Lumban W, Kuawong M, Phukdee T, Srifai J, Boonman K. 2017. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agriculture and Natural Resources, 51, 91–95.
Morkved P T. 2007. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biology and Biochemistry, 39, 2048–2057.
Niklaus P A, Le Roux X, Poly F, Buchmann N, Scherer-Lorenzen M, Weigelt A, Barnard R L. 2016. Plant species diversity affects soil-atmosphere fluxes of methane and nitrous oxide. Oecologia, 181, 919–930.
Niklaus P A, Wardle D A, Tate K R. 2006. Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of Soils. Plant and Soil, 282, 83–98.
Orwin K H, Buckland S M, Johnson D, Turner B L, Smart S, Oakley S, Bardgett R D. 2010. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98, 1074–1083.
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens I A. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934.
Ravishankara A R, Daniel J S, Portmann R W. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326, 123–125.
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rex D, Clough T J, Richards K G, de Klein C, Morales S E, Samad M S, Grant J, Lanigan G J. 2018. Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems, 110, 135–149.
Rocca J D, Hall E K, Lennon J T, Evans S E, Waldrop M P, Cotner J B, Nemergut D R, Graham E B, Wallenstein M D. 2015. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. The ISME Journal, 9, 1693–1699.
Saggar S, Luo J, Giltrap D, Maddena M. 2009. Nitrous oxide emissions from temperature grasslands: Processes, measurements, modeling and mitigation. In: Sheldon A I, Barnhart E P, eds., Nitrous Oxide Emissions Research Progress. Novoa Science Publishers, New York, USA. p. 66.
Scott D A, Eckhoff K D, Baer S G. 2020. Plant diversity decreases potential nitrous oxide emissions from restored agricultural soil. Pedobiologia, 83, 150670.
Shi Y J, Wang J F, Ao Y N, Han J Y, Guo Z H, Liu X Y, Zhang J W, Mu C S, Le Roux X. 2021. Responses of soil N2O emissions and their abiotic and biotic drivers to altered rainfall regimes and co-occurring wet N deposition in a semi-arid grassland. Global Change Biology, 27, 4894–4908.
Sosa O A. 2018. Phosphorus redox reactions as pinch hitters in microbial metabolism. Proceedings of the National Academy of Sciences of the United States of America, 115, 7–8.
Tang Y, Yu G, Zhang X, Wang Q, Ge J, Liu S. 2018. Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Applied Soil Ecology, 124, 218–228.
Tang Y, Zhang X, Li D, Wang H, Chen F, Fu X, Fang X, Sun X, Yu G. 2016. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 103, 284–293.
Ullah B, Shaaban M, Ronggui H, Zhao J, Lin S. 2016. Assessing soil nitrous oxide emission as affected by phosphorus and nitrogen addition under two moisture levels. Journal of Integrative Agriculture, 15, 2865–2872.
Wang F, Li J, Wang X, Zhang W, Zou B, Neher D A, Li Z. 2014. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615.
Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. 2018. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Science of the Total Environment, 619–620, 1530–1537.
Wei X, Reich P B, Hobbie S E, Kazanski C E. 2017. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Global Change Biology, 23, 4717–4727.
Wolf K, Veldkamp E, Homeier J, Martinson G O. 2011. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles, 25, GB4009.
Yan Y, Ganjurjav H, Hu G, Liang Y, Li Y, He S, Danjiu L, Yang J, Gao Q. 2018. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 265, 45–53.
Yang Y, Xiao Y, Li C, Wang B, Gao Y, Zhou G. 2021. Nitrogen addition, rather than altered precipitation, stimulates nitrous oxide emissions in an alpine steppe. Ecology and Evolution, 11, 15153–15163.
Yin M, Gao X, Tenuta M, Li L, Gui D, Li X, Zeng F. 2020. Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma, 375, 114511.
Zhang J, Han X. 2008. N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 42, 291–302.
Zhang J, Müller C, Cai Z. 2015. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils. Soil Biology and Biochemistry, 84, 199–209.
Zhang W, Zhu X, Luo Y, Rafique R, Chen H, Huang J, Mo J. 2014. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species. Biogeosciences, 11, 4941–4951.
Zhang Y, Zhang N, Yin J, Yang F, Zhao Y, Jiang Z, Tao J, Yan X, Qiu Y, Guo H, Hu S. 2020. Combination of warming and N inputs increases the temperature sensitivity of soil N2O emission in a Tibetan alpine meadow. Science of the Total Environment, 704, 135450.
Zhao W, Zhang J B, Müller C, Cai Z. 2017. Effects of pH and mineralisation on nitrification in a subtropical acid forest soil. Soil Research, 56, 275–283.
Zhao Z Z, Dong S K, Jiang X M, Liu S L, Ji H Z, Li Y, Han Y H, Sha W. 2017. Effects of warming and nitrogen deposition on CH4, CO2 and N2O emissions in alpine grassland ecosystems of the Qinghai-Tibetan Plateau. Science of the Total Environment, 592, 565–572.
Zheng M, Zhang T, Liu L, Zhu W, Zhang W, Mo J. 2016. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences, 13, 3503–3517.
Zhu G, Ju X, Zhang J, Müller C, Rees R M, Thorman R E, Sylvester-Bradley R. 2019. Effects of the nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on gross N transformation rates and N2O emissions. Biology and Fertility of Soils, 55, 603–615.
Zhu J X, Wang Q F, He N P, Smith M D, Elser J J, Du J Q, Yuan G, Yu G R, Yu Q. 2016. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation, Journal of Geophysical Research (Biogeosciences), 121, 1605–1616.
Zong N, Shi P, Song M, Zhang X, Jiang J, Chai X. 2016. Nitrogen critical loads for an alpine meadow ecosystem on the Tibetan Plateau. Environmental Management, 57, 531–542.
|