Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Integrated transcriptome and hormone reveals transgenerational effects of drought priming in enhancing low-temperature tolerance in wheat offspring

Junhong Guo1, 2, 3*, Fasih Ullah Haider2*, Bing Dai2, 3, Peng Mu2, Xiangnan Li2, 3#

1 National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China

2 Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

3 College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

干旱锻炼能够增强植物对多种非生物胁迫(包括低温)的耐受性,然而,其在小麦中的跨代效应尚不清楚。本研究结合转录组测序和激素分析,系统解析连续六代干旱锻炼对小麦后代低温抗性的影响。结果表明,与对照组相比,干旱锻炼的后代在正常温度和低温胁迫下分别鉴定出4241679个差异基因。低温胁迫后,干旱锻炼后代中N-(3-吲哚乙酰基)-L-缬氨酸含量显著下降,而色胺、二氢玉米素和赤霉素20含量显著上升;富集分析结果表明植物激素信号转导、油菜素内酯及玉米素生物合成途径受到显著影响,揭示激素调控在干旱锻炼诱导子代低温抗性中具有重要作用。碳水化合物代谢酶组学分析进一步揭示了不同的代际差异:祖代干旱锻炼主要增强葡萄糖代谢相关酶的活性,而亲代干旱锻炼直接影响蔗糖代谢,反映了阶段特异性的调控功能。这些代谢变化与生理水平的变化相一致,干旱锻炼后代在低温胁迫下具有更稳定的光系统及更高的抗氧化酶活性。综上,祖代干旱锻炼可通过跨代胁迫记忆诱导稳定的分子与代谢修饰,从而增强后代小麦的低温抗性,为培育耐寒和适应气候变化的小麦新品种提供了新的策略。



Abstract  

Drought priming enhances plant tolerance to various abiotic stresses, including low temperature; however, its multigenerational effects in wheat remain incompletely characterized.  To address this gap, we conducted a comprehensive multi-omics investigation combining transcriptomic profiling and hormone analysis to examine how drought priming across six consecutive generations influences offspring responses.  Wheat plants primed during grain-filling produced offspring with substantial alterations in gene expression and metabolism when exposed to low-temperature stress.  Analysis identified 424 and 1,679 differentially expressed genes (DEGs) between primed and non-primed offspring under normal and low-temperature conditions, respectively.  Under low-temperature stress, primed progeny exhibited a significant reduction in N-(3-Indolylacetyl)-L-valine and marked increases in tryptamine, dihydrozeatin, and gibberellin A20 levels.  Pathway enrichment analysis revealed predominant effects on plant hormone signal transduction, brassinosteroid biosynthesis, and zeatin biosynthesis pathways, highlighting the central role of hormonal regulation in enhancing stress tolerance.  Analysis of carbohydrate metabolism revealed distinct generational patterns: grandparental drought priming primarily enhanced glucose-related enzyme activities, suggesting a sustained impact on glucose metabolism, while parental drought priming influenced sucrose metabolism more directly, indicating stage-specific regulatory roles.  These metabolic alterations corresponded with improved physiological performance under low-temperature stress, evidenced by higher chlorophyll fluorescence and increased antioxidant enzyme activities in primed offspring.  These findings demonstrate that ancestral drought priming induces heritable molecular and metabolic modifications that enhance low-temperature tolerance in wheat offspring.  This transgenerational stress memory presents a promising approach for breeding wheat varieties with improved resilience to cold stress and variable climates. Integration of both parental and grandparental environmental histories into breeding programs may optimize crop stability under abiotic stress.

Keywords:  drought priming       low temperature       phytohormones       transcriptomics       transgenerational effects  
Online: 23 September 2025  
Fund: 

This research was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28020400), the National Natural Science Fund (32372228), and the Danmarks Frie Forskningsfond (0217-00084B).

About author:  #Correspondence Xiangnan Li, Tel: +86-431-82536087, E-mail: lixiangnan@iga.ac.cn *These two authors contributed equally to this work.

Cite this article: 

Junhong Guo, Fasih Ullah Haider, Bing Dai, Peng Mu, Xiangnan Li. 2025. Integrated transcriptome and hormone reveals transgenerational effects of drought priming in enhancing low-temperature tolerance in wheat offspring. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.024

Agarwal P K, Gupta K, Lopato S, Agarwal P. 2017. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 68, 2135-2148.

Ahad A, Gul A, Batool T S, Huda N U, Naseeer F, Salam U A, Salam M A, Ilyas M, Unal B T, Ozturk M. 2023. Molecular and genetic perspectives of cold tolerance in wheat. Molecular Biology Reports, 50, 6997-7015.

Badawi M, Reddy Y V, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M. 2008. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant and Cell Physiology, 49, 1237-1249.

Balibrea-Lara M E, Garcia M C G, Fatima T, Ehneß R, Lee T K, Proels R, Tanner W, Roitsch T. 2004. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. The Plant Cell, 16, 1276-1287.

Baurle I, Trindade I. 2020. Chromatin regulation of somatic abiotic stress memory. Journal of Experimental Botany, 71, 5269-5279.

Bell A M, Hellmann J K. 2019. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annual Review of Ecology, Evolution, and Systematics50, 97-118.

Ben-Abdallah M, Methenni K, Nouairi I, Zarrouk M, Youssef N B. 2017. Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chetoui. Scientia Horticulturae, 221, 43-52. 

Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins Jr F, Kovalchuk I. 2010. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-Like proteins. PLoS ONE, 5, e9514.

Brzezinka K, Altmann S, Baurle I. 2019. BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory. Plant Cell Environment, 42, 771-781.

Chen M, Zhu F, Wang F, Ye N, Gao B, Chen X, Zhao S, Fan T, Cao Y, Liu T, Su Z, Xie L, Hu Q, Wu H, Xiao S, Zhang J, Liu Y. 2019. Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 70, 817-833.

Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. 2003. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 17, 1043-1054.

Dai Y, Yuan L, Zhang S, Wang J, Xie S, Zhao M, Chen G, Sun R, Wang C. 2019. Comprehensive evaluation for cold tolerance in Wucai (Brassica campestris L.) by the Performance Index on an Absorption Basis (PIabs). Agronomy9, 61.

Da-Silva W S, Rezende G L, Galina A. 2001. Subcellular distribution and kinetic properties of cytosolic and noncytosolic hexokinases in maize seedling roots: Implications for hexose phosphorylation. Journal of Experimental Botany52, 1191-1201.

Ding F, Wang C, Xu N, Wang M, Zhang S. 2021. Jasmonic acid-regulated putrescine biosynthesis attenuates cold-induced oxidative stress in tomato plants. Scientia Horticulturae288, 110373.

Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. Cellular and Molecular Life Sciences, 73, 797-810. 

Farooq M, Hussain M, Nawaz A, Lee D, Alghamdi S S, Siddique K H M. 2017. Seed priming improves chilling tolerance in chickpea by modulating germination metabolism, trehalose accumulation and carbon assimilation. Plant Physiology and Biochemistry, 111, 274-283. 

Figueroa C M, Diez M D A, Ballicora M A, Iglesias A A. 2022 Structure, function, and evolution of plant ADP-glucose pyrophosphorylase. Plant Molecular Biology, 108, 307-323.

Fils-Lycaon B, Julianus P, Chillet M, Galas C, Hubert O, Rinaldo D, Mbéguié-A-Mbéguié D. 2011. Acid invertase as a serious candidate to control the balance sucrose versus (glucose + fructose) of banana fruit during ripening. Scientia Horticulturae, 129, 197-206.

Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications12, 1-15.

Georgii E, Kugler K, Pfeifer M, Vanzo E, Block K, Domagalska M A, Jud W, AbdElgawad H, Asard H, Reinhardt R, Hansel A, Spannagl M, Schaffner A R, Palme K, Mayer K F X, Schnitzler J P. 2019. The systems architecture of molecular memory in poplar after abiotic stress. The Plant Cell, 31, 346-367.

Granot D, Kelly G, Stein O, David-Schwartz R. 2014. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. Journal of Experimental Botany, 65, 809-819.

Guo J, Wang H, Liu S, Wang Y, Liu F, Li X. 2022. Parental drought priming enhances tolerance to low temperature in wheat (Triticum aestivum) offspring. Functional Plant Biology, 49, 946-957.

He M, Li H, Sun Z, Li X, Li Q, Cai J, Zhou Q, Zhong Y, Wang X, Jiang D. 2025. Drought priming enhances young spike development in wheat under drought stress during stem elongation. Journal of Integrative Agriculture,

Hernandez-Walias F J, Garcia M, Moreno M, Giannoukos I, Gonzalez N, Sanz-Garcia E, Necira K, Canto T, Tenllado F. 2022. Transgenerational tolerance to salt and osmotic stresses induced by plant virus infection. International Journal of Molecular Sciences23, 12497.

Hilker M, Schmulling T. 2019. Stress priming, memory, and signalling in plants. Plant Cell & Environment, 42, 753-761.

Ishaque W, Osman R, Hafiza B S, Malghani S, Zhao B, Xu M, Ata-Ul-Karim S T. 2023. Quantifying the impacts of climate change on wheat phenology, yield, and evapotranspiration under irrigated and rainfed conditions. Agricultural Water Management275, 108017.

Iwasaki M, Paszkowski J. 2014. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proceedings of the National Academy of Sciences of the United States of America111, 8547-8552.

Jammer A, Gasperl A, Luschin-Ebengreuth N, Heyneke E, Chu H, Cantero-Navarro E, Grosskinsky D K, Albacete A A, Stabentheiner E, Franzaring J, Fangmeier A, Vander-Graaff E, Roitsch T. 2015. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants. Journal of Experimental Botany66, 5531-5542.

Kambona C M, Koua P A, Leon J, Ballvora A. 2023a. Intergenerational and transgenerational effects of drought stress on winter wheat (Triticum aestivum L.). Physiologia Plantarum, 175, e13951.

Kambona C M, Koua P A, Leon J, Ballvora A. 2023b. Stress memory and its regulation in plants experiencing recurrent drought conditions. Theoretical and Applied Genetics, 136, 26.

Lamke J, Brzezinka K, Altmann S, Baurle I. 2016. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO Journal, 35, 162-175.

Li H, Li H, Lv Y, Wang Y, Wang Z, Xin C, Liu S, Zhu X, Song F, Li X. 2019. Salt priming protects photosynthetic electron transport against low-temperature-induced damage in wheat. Sensors20, 62.

Li L, Mao Z, Wang P, Cai J, Zhou Q, Zhong Y, Jiang D, Wang. 2025a. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling. Journal of Integrative Agriculture, 24, 2888-2901.

Li Q, Sun Z, Jing Z, Wang X, Zhong C, Wan W, Malko M, Xu L, Li Z, Zhou Q, Cai J, Zhong Y, Huang M, Jiang D. 2025b. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat. Journal of Integrative Agriculture, 24, 2902-2919.

Li X, Topbjerg H B, Jiang D, Liu F. 2015. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant and Soil, 393, 307-318.

Li Z, Ji W, Hong E, Fan Z, Lin B, Xia X, Chen X, Zhu X. 2023. Study on heat resistance of peony using photosynthetic indexes and rapid fluorescence kinetics. Horticulturae9, 100.

Liu H, Able A J, Able J A. 2021a. Small RNA, transcriptome and degradome analysis of the transgenerational heat stress response network in durum wheat. International Journal of Molecular Sciences, 22, 5532.

Liu H, Able A J, Able J A. 2021b. Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Scientific Reports11, 1-17.

Liu H, Able A J, Able J A. 2022. Priming crops for the future: Rewiring stress memory. Trends in Plant Science, 27, 699-716.

Liu H C, Lamke J, Lin S Y, Hung M J, Liu K M, Charng Y Y, Baurle I. 2018. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. The Plant Journal95, 401-413.

Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, Zhang Y, Wang M, Deng Y, Wang E, He Y, Baurle I, Li J, Cao X, He Z. 2019a. An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research29, 379-390.

Liu L, Ji H, An J, Shi K, Ma J, Liu B, Tang L, Cao W, Zhu Y. 2019b. Response of biomass accumulation in wheat to low-temperature stress at jointing and booting stages. Environmental and Experimental Botany157, 46-57.

Liu N, Staswick P E, Avramova Z. 2016. Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress. Plant, Cell & Environment, 39, 2515-2529.

Lu T, Yu H, Li Q, Chai L, Jiang W. 2019. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Frontiers in Plant Science, 10, 431739.

Lukić N, Schurr FM, Trifković T, Kukavica B, Walter J. 2023. Transgenerational stress memory in plants is mediated by upregulation of the antioxidative system. Environmental and Experimental Botany, 205, 105129. 

Mathur S, Mehta P, Jajoo A. 2013. Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiology and Molecular Biology of Plants, 19, 179-188.

Mendanha T, Rosenqvist E, Hyldgaard B N, Doonan J H, Ottosen C O. 2020. Drought priming effects on alleviating the photosynthetic limitations of wheat cultivars (Triticum aestivum L.) with contrasting tolerance to abiotic stresses. Journal of Agronomy and Crop Science, 206, 651-664.

Mishra K B, Mishra A, Kubasek J, Urban O, Heyer A G, Govindjee. 2019. Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: Chlorophyll a fluorescence and gas-exchange measurements. Photosynthesis Research, 139, 123-143.

Mohammadi S, Rydgren K, Bakkestuen V, Gillespie M A. 2023. Impacts of recent climate change on crop yield can depend on local conditions in climatically diverse regions of Norway. Scientific Reports13, 1-12.

Molinier J, Ries G, Zipfel C, Hohn B. 2006. Transgeneration memory of stress in plants. Nature442, 1046-1049.

Mozgova I, Wildhaber T, Trejo-Arellano M S, Fajkus J, Roszak P, Köhler C, Hennig L. 2018. Transgenerational phenotype aggravation in CAF-1 mutants reveals parent-of-origin specific epigenetic inheritance. New Phytologist, 220, 908-921.

Nguyen N H, Vu N T, Cheong J J. 2022. Transcriptional stress memory and transgenerational inheritance of drought tolerance in plants. International Journal of Molecular Sciences, 23, 12918.

Pollock C, Lloyd E J. 1987. The effect of low temperature upon starch, sucrose and fructan synthesis in leaves. Annals of Botany60, 231-235.

Puy J, Dvořáková H, Medina N G, Latzel V, Carmona C P. 2021. Competition-induced transgenerational plasticity influences competitive interactions and leaf decomposition of offspring. New Phytologist, 229, 3497-3507.

Ramazan S, Qazi H A, Dar Z A, John R. 2021. Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiology and Molecular Biology of Plants, 27, 1395-1412.

Rosa M, Prado C, Podazza G, Interdonato R, Gonzalez J A, Hilal M, Prado F E. 2009. Soluble sugars--metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling & Behavior, 4, 388-393.

Ru C, Hu X, Chen D, Wang W, Song T. 2022. Heat and drought priming induce tolerance to subsequent heat and drought stress by regulating leaf photosynthesis, root morphology, and antioxidant defense in maize seedlings. Environmental and Experimental Botany, 202, 105010.

Sadhukhan A, Prasad S S, Mitra J, Siddiqui N, Sahoo L, Kobayashi Y, Koyama H. 2022. How do plants remember drought? Planta, 256, 7.

Shi K, Fu L J, Zhang S, Li X, Liao Y W K, Xia X J, Zhou Y H, Wang R Q, Chen Z X, Yu J Q. 2013. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 237, 589-601.

Singha A, Soothar R K, Wang C, Marín E E T, Tankari M, Hao W, Wang Y. 2021. Drought priming alleviated salinity stress and improved water use efficiency of wheat plants. Plant Growth Regulation, 96, 357-368.

Tankari M, Wang C, Ma H, Li X, Li L, Soothar R K, Cui N, Zaman-Allah M, Hao W, Liu F, Wang Y. 2021. Drought priming improved water status, photosynthesis and water productivity of cowpea during post-anthesis drought stress. Agricultural Water Management, 245, 106565.

Tasnim Z, Saha S M, Hossain M E, Khan M A. 2023. Perception of and adaptation to climate change: The case of wheat farmers in northwest Bangladesh. Environmental Science and Pollution Research, 30, 32839-32853.

Varandas S, Teixeira M J, Marques J C, Aguiar A, Alves A, Bastos M M. 2004. Glucose and fructose levels on grape skin: Interference in Lobesia botrana behaviour. Analytica Chimica Acta513, 351-355.

Verhoeven K J F, Verbon E H, Van-Gurp T P, Oplaat C, Ferreira-de-Carvalho J, Morse A M, Stahl M, Macel M, McIntyre L M. 2018. Intergenerational environmental effects: Functional signals in offspring transcriptomes and metabolomes after parental jasmonic acid treatment in apomictic dandelion. New Phytologist217, 871-882.

Virdi K S, Laurie J D, Xu Y, Yu J, Shao M, Sanchez R, Kundariya H, Wang D, Riethoven J, Wamboldt Y P M, Shedge V, Mackenzie S A. 2015. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nature Communications, 6, 1-9.

Vu W T, Chang P L, Moriuchi K S, Friesen M L. 2015. Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evolutionary Biology, 15, 59.

Wang H, Lu S, Guan X, Jiang Y, Wang B, Hua J, Zou B. 2022. Dehydration-responsive element binding protein 1C, 1E, and 1G promote stress tolerance to chilling, heat, drought, and salt in rice. Frontiers in Plant Science, 13, 851731.

Wang X, Chen J, Ge J, Huang M, Cai J, Zhou Q, Dai T, Mur LAJ, Jiang D. 2021a. The different root apex zones contribute to drought priming induced tolerance to a reoccurring drought stress in wheat. The Crop Journal9, 1088-1097.

Wang X, Ge J, He M, Li Q, Cai J, Zhou Q, Zhong Y, Wollenweber B, Jiang D. 2023. Enhancing crop resilience: Understanding the role of drought priming in wheat stress response. Field Crops Research, 302, 109083.

Wang X, Li Q, Xie J, Huang M, Cai J, Zhou Q, Dai T, Jiang D. 2021b Abscisic acid and jasmonic acid are involved in drought priming-induced tolerance to drought in wheat. The Crop Journal, 9, 120-132.

Wang X, Li X, Liu F, Jiang D. 2025 Innovative pathways to sustainable wheat production. Journal of Integrative Agriculture, 24, 2885-2887.

Wang X, Zhang X, Chen J, Wang X, Cai J, Zhou Q, Dai T, Cao W, Jiang D. 2018. Parental drought-priming enhances tolerance to post-anthesis drought in offspring of wheat. Frontiers in Plant Science9, 333231.

Wang Z, Butel N, Santos-Gonzalez J, Simon L, Wardig C, Kohler C. 2021a. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biology, 22, 141. 

Wang Z, Wong D C J, Wang Y, Xu G, Ren C, Liu Y, Kuang Y, Fan P, Li S, Xin H, Liang Z. 2021b. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. Plant Physiology, 186, 1660-1678. 

Wei Y, Chen H, Wang L, Zhao Q, Wang D, Zhang T. 2022. Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves. Plant Signaling & Behavior, 17, 2013638.

Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Becker J, Weigel D, Gutierrez-Marcos J. 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. ELife, 5, e13546.

Wilkinson S W, Hannan-Parker A, Muench A, Wilson R S, Hooshmand K, Henderson M A, Moffat E K, Rocha P, Hipperson H, Stassen J H M, Lopez-Sanchez A, Fomsgaard I S, Krokene P, Mageroy M H, Ton J. 2023. Long-lasting memory of jasmonic acid-dependent immunity requires DNA demethylation and ARGONAUTE1. Nature Plants9, 81-95.

Winfield M O, Lu C, Wilson I D, Coghill J A, Edwards K J. 2010. Plant responses to cold: Transcriptome analysis of wheat. Plant Biotechnology Journal, 8, 749-771.

Xu H, Hassan M A, Sun D, Wu Z, Jiang G, Liu B, Ni Q, Yang W, Fang H, Li J, Chen X. 2022. Effects of low temperature stress on source-sink organs in wheat and phosphorus mitigation strategies. Frontiers in Plant Science, 13, 807844.

Yan K, Chen P, Shao H, Shao C, Zhao S, Brestic, M. 2013. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE, 8, e62100.

Zahra N, Hafeez M B, Wahid A, Al-Masruri M H, Ullah A, Siddique K H M, Farooq M. 2023. Impact of climate change on wheat grain composition and quality. Journal of the Science of Food and Agriculture, 103, 2745-2751.

Zhang Q, Tian Y. 2022. Molecular insights into the transgenerational inheritance of stress memory. Journal of Genetics and Genomics, 49, 89-95.

Zhang X, Wang X, Zhong J, Zhou Q, Wang X, Cai J, Dai T, Cao W, Jiang D. 2016. Drought priming induces thermo-tolerance to post-anthesis high-temperature in offspring of winter wheat. Environmental and Experimental Botany, 127, 26-36.

Zhou W, Leul M. 1998. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regulation, 26, 41-47.

Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 71, 2172-2185.

[1] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[2] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[3] Jin Wang, Minghua Wei, Haiyan Wang, Changjuan Mo, Yingchun Zhu, Qiusheng Kong. A time-course transcriptome reveals the response of watermelon to low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1786-1799.
[4] Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang. An integrated physiology and proteomics analysis reveals the response of wheat grain to low temperature stress during booting[J]. >Journal of Integrative Agriculture, 2025, 24(1): 114-131.
[5] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
[6] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[7] YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao. Multi-omics-driven development of alternative crops for natural rubber production[J]. >Journal of Integrative Agriculture, 2023, 22(4): 959-971.
[8] XU Hui, HOU Kuo-yang, FANG Hao, LIU Qian-qian, WU Qiu, LIN Fei-fei, DENG Rui, ZHANG Lin-jie, CHEN Xiang, LI Jin-cai. Twice-split phosphorus application alleviates low-temperature impacts on wheat by improved spikelet development and setting[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3667-3680.
[9] GAO Ting, HOU Bing-hao, SHAO Shu-xian, XU Meng-ting, ZHENG Yu-cheng, JIN Shan, WANG Peng-jie, YE Nai-xing. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3346-3363.
[10] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[11] WANG Hai-xia, WANG Ming-lun, WANG Xiu-zhong, DING Yu-long . Detection of seven phytohormones in peanut tissues by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry[J]. >Journal of Integrative Agriculture, 2020, 19(3): 700-708.
[12] YU Xiao-fang, BORJIGIN Qinggeer, GAO Ju-lin, WANG Zhi-gang, HU Shu-ping, BORJIGIN Naoganchaolu, WANG Zhen, SUN Ji-ying, HAN Sheng-cai.
Exploration of the key microbes and composition stability of microbial consortium GF-20 with efficiently decomposes corn stover at low temperatures
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1893-1904.
[13] WANG Zhi-qin, ZHANG Wei-yang, YANG Jian-chang. Physiological mechanism underlying spikelet degeneration in rice[J]. >Journal of Integrative Agriculture, 2018, 17(07): 1475-1481.
[14] JIA Xiao-hui, WANG Wen-hui, DU Yan-min, TONG Wei, WANG Zhi-hua, Hera Gul. Optimal storage temperature and 1-MCP treatment combinations for different marketing times of Korla Xiang pears[J]. >Journal of Integrative Agriculture, 2018, 17(03): 693-703.
[15] ZHAO Jie, QIN Jing-jing, SONG Qian, SUN Chuan-qing, LIU Feng-xia. Combining QTL mapping and expression profile analysis to identify candidate genes of cold tolerance from Dongxiang common wild rice (Oryza rufipogon Griff.)[J]. >Journal of Integrative Agriculture, 2016, 15(9): 1933-1943.
No Suggested Reading articles found!