Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (8): 2888-2901    DOI: 10.1016/j.jia.2024.05.008
Special Focus: Innovative Pathways to Sustainable Wheat Production Advanced Online Publication | Current Issue | Archive | Adv Search |
Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling

Liulong Li1, Zhiqiang Mao1, Pei Wang2, Jian Cai1, Qin Zhou1, Yingxin Zhong1, Dong Jiang1, Xiao Wang1#

1 National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Ecophysiology, Ministry of Agriculture and Rural Affairs/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
2 College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
 Highlights 
Drought priming (DP) is a strategic intervention to protect grain quality under drought stress.
DP mitigates starch loss and enhances starch functionality under drought.
DP modulates protein composition while limiting total protein accumulation under drought.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
干旱胁迫对作物产量和品质的负面影响十分显著。已有研究表明,植物在生长阶段早期进行干旱锻炼可以提高其在生殖阶段对干旱胁迫的耐受性,但干旱锻炼对籽粒品质的影响尚不清楚。本研究旨在探讨干旱胁迫下,干旱锻炼对籽粒灌浆期淀粉和蛋白质含量的影响。研究结果表明,干旱胁迫导致淀粉含量及其组分显著减少,同时增加了谷蛋白大聚合物和蛋白质组分的含量。值得注意的是,与未经锻炼植株相比,经过干旱锻炼的植物在干旱胁迫下(PD)表现出淀粉含量及其组分下降程度的明显缓解,从而改善了淀粉的膨胀力和糊化特性。此外, PD总蛋白质含量的上升幅度显著低于未锻炼植株。总之,本研究明确了干旱锻炼作为一种有效策略,主要通过减少淀粉损失和控制蛋白质含量上升等来抵消干旱胁迫对籽粒品质负面影响。


Abstract  
The impacts of drought stress on crop yield and quality are substantial.  Drought priming during the early growth stage of plants has been shown to improve tolerance to drought stress during the reproductive stage, although its effects on grain quality remain elusive.  This study investigated the influence of drought priming on starch and protein levels in grains under drought stress during grain filling.  Our results revealed that drought stress leads to a reduction in the contents of starch and its constituents, while simultaneously increasing glutenin macropolymers and protein fractions.  Notably, drought primed plants under drought stress (PD) exhibited mitigated declines in the contents of starch and its components, leading to improvements in starch swelling power and pasting properties.  In addition, PD resulted in a slight increase in the protein fractions, limiting the overall rise in total protein content compared to drought stress alone.  The results of our study underscore the efficacy of drought priming as a strategy to counteract the negative effects of drought stress on grain quality, particularly by minimizing starch losses and restraining protein content elevation.
Keywords:  wheat       drought priming        starch        protein        quality        amino acid  
Online: 29 May 2024   Accepted:
Fund: 
This study was supported by the projects of the National Key Research and Development Program of China (2023YFD2300202), the National Natural Science Foundation of China (32272213 and 31771693), the China Agriculture Research System (CARS-03), and the Jiangsu Collaborative Innovation Center for Modern Crop Production, China (JCIC-MCP).
About author:  Liulong Li, E-mail: 2021201012@stu.njau.edu.cn; #Correspondence Xiao Wang, Tel/Fax: +86-25-84399627, E-mail: xiaowang@njau.edu.cn

Cite this article: 

Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. 2025. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling. Journal of Integrative Agriculture, 24(8): 2888-2901.

AACC (International Association of Cereal Chemists). 2000. Approved Methods of the American Association of Cereal Chemists. AACCI (American Association of Cereal Chemists), St. Paul, MN, USA.

Acuña M L, Savin R, Curá J A, Slafer G A. 2005. Grain protein quality in response to changes in pre-anthesis duration in wheats released in 1940, 1964 and 1994. Journal of Agronomy and Crop Science191, 226–232.

Ahmed M, Sadak M. 2016. Effect of putrescine foliar application on wheat genotypes (Triticum aestivum L.) under water stress conditions. International Journal of PharmTech Research9, 94–102.

Allah M S A, El-Bassiouny H M S, Bakry B A, Sadak M S. 2015. Effect of Arbuscular Mycorrhiza and glutamic acid on growth, yield, some chemical composition and nutritional quality of wheat plant grown in newly reclaimed sandy soil. Research Journal of PharmaceuticalBiological and Chemical Sciences6, 1038–1054.

Altenbach S B, DuPont F M, Kothari K M, Chan R, Johnson E L, Lieu D. 2003. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science37, 9–20.

AOACI (Association of Official Analytical Chemists International). 2000. Official Methods of Analysis. 17th ed. AOAC (The Association of Official Analytical Chemists), Arlington, VA, USA.

Bakhoum G S, Sadak M S, Thabet M S. 2023a. Induction of tolerance in groundnut plants against drought stress and cercospora leaf spot disease with exogenous application of arginine and sodium nitroprusside under field conditions. Journal of Soil Science and Plant Nutrition23, 6612–6631.

Bakhoum G S, Tawfik M M, Kabesh M O, Sadak M S. 2023b. Potential role of algae extract as a natural stimulating for wheat production under reduced nitrogen fertilizer rates and water deficit. Biocatalysis and Agricultural Biotechnology51, 102794.

Bakry B, Sadak M S, El-Karamany M F, Tawfik M M. 2019. Sustainable production of two wheat cultivars under water stress conditions. Plant Archives19, 2307–2315.

Bonilla J C, Erturk M Y, Kokini J L. 2020. Understanding the role of gluten subunits (LMW, HMW glutenins and gliadin) in the networking behavior of a weak soft wheat dough and a strong semolina wheat flour dough and the relationship with linear and non-linear rheology. Food Hydrocolloids108, 106002.

Bruce T J A, Matthes M C, Napier J A, Pickett J A. 2007. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science173, 603–608.

Campiglia E, Mancinelli R, De Stefanis E, Pucciarmati S, Radicetti E. 2015. The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the mediterranean environment of central Italy. Field Crops Research176, 34–44.

Chi Q, Du L Y, Ma W, Niu R Y, Wu B W, Guo L J, Ma M, Liu X L, Zhao H X. 2023. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings. Journal of Integrative Agriculture22, 981–998.

Chu J P, Guo X H, Zheng F N, Zhang X, Dai X L, He M R. 2023. Effect of delayed sowing on grain number, grain weight, and protein concentration of wheat grains at specific positions within spikes. Journal of Integrative Agriculture22, 2359–2369.

Cook B I, Smerdon J E, Seager R, Coats S. 2014. Global warming and 21st century drying. Climate Dynamics43, 2607–2627.

Fan Y H, Qin B Y, Yang J H, Ma L L, Cui G J, He W, Tang Y, Zhang W J, Ma S Y, Ma C X, Huang Z L. 2024. Night warming increases wheat yield by improving pre-anthesis plant growth and post-anthesis grain starch biosynthesis. Journal of Integrative Agriculture23, 536–550.

Geng G, Wu J, Wang Q, Lei T, He B. 2016. Agricultural drought hazard analysis during 1980–2008: A global perspective. International Journal of Climatology36, 389–399.

Goesaert H, Brijs K, Veraverbeke W S, Courtin C M, Gebruers K, Delcour J A. 2005. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology16, 12–30.

Hamed K S P, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M. 2020. Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline. Renewable Energy145, 699–710.

Huang T T, Zhou D N, Jin Z Y, Xu X M, Chen H Q. 2016. Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids54, 202–210.

Jenner C F, Ugalde T D, Aspinall D. 1990. The physiology of starch and protein deposition in the endosperm of wheat. Functional Plant Biology18, 211–226.

Jiang D, Cao W, Dai T, Jing Q. 2003. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regulation41, 247–257.

Katyal M, Singh N, Chopra N, Kaur A. 2019. Hard, medium-hard and extraordinarily soft wheat varieties: Comparison and relationship between various starch properties. International Journal of Biological Macromolecules123, 1143–1149.

Konik-Rose C M, Moss R, Rahman S, Appels R, Stoddard F, McMaster G. 2001. Evaluation of the 40 mg swelling test for measuring starch functionality. Starch-Starke53, 14–20.

Kumar R, Mukherjee S, Ayele B T. 2018. Molecular aspects of sucrose transport and its metabolism to starch during seed development in wheat: A comprehensive review. Biotechnology Advances36, 954–967.

Li L, Dong X, He M, Huang M, Cai J, Zhou Q, Zhong Y, Jiang D, Wang X. 2023. Unravelling the role of adventitious roots under priming-induced tolerance to waterlogging stress in wheat. Environmental and Experimental Botany216, 105516.

Li T, Angeles O, Radanielson A, Marcaida M, Manalo E. 2015. Drought stress impacts of climate change on rainfed rice in South Asia. Climatic Change133, 709–720.

Li W H, Gao J M, Wu G L, Zheng J M, Ouyang S H, Luo Q G, Zhang G Q. 2016. Physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat: Effects of lipids removal. Food Hydrocolloids60, 364–373.

Li X, Cai J, Li H, Bo Y, Liu F, Jiang D, Dai T, Cao W. 2012. Effect of shading from jointing to maturity on high molecular weight glutenin subunit accumulation and glutenin macropolymer concentration in grain of winter wheat. Journal of Agronomy and Crop Science198, 68–79.

Li Y, Wu Y, Hernandez-Espinosa N, Peña R J. 2013. The influence of drought and heat stress on the expression of end-use quality parameters of common wheat. Journal of Cereal Science57, 73–78.

Lian X, Guo J, Wang D, Li L, Zhu J. 2014. Effects of protein in wheat flour on retrogradation of wheat starch. Journal of Food Science79, C1505–C1511.

Liu D T, Zhang X, Jiang W, Li M, Wu X J, Gao D R, Bie T D, Lu C B. 2022. Influence of high-molecular-weight glutenin subunit deletions at the Glu-A1 and Glu-D1 loci on protein body development, protein components and dough properties of wheat (Triticum aestivum L.). Journal of Integrative Agriculture21, 1867–1876.

Liu J, Feng H, He J, Chen H, Ding D, Luo X, Dong Q G. 2019. Modeling wheat nutritional quality with a modified CERES-wheat model. European Journal of Agronomy109, 125901.

Lv X K, Ding Y P, Long M, Liang W X, Gu X Y, Liu Y, Wen X X. 2021. Effect of foliar application of various nitrogen forms on starch accumulation and grain filling of wheat (Triticum aestivum L.) under drought stress. Frontiers in Plant Science12, 645379.

Pei F, Sun L, Fang Y, Yang W, Ma G, Ma N, Hu Q. 2020. Behavioral changes in glutenin macropolymer fermented by lactobacillus plantarum LB-1 to promote the rheological and gas production properties of dough. Journal of Agricultural and Food Chemistry68, 3585–3593.

Perdomo J A, Conesa M A, Medrano H, Ribas-Carbo M, Galmes J. 2015. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiologia Plantarum155, 149–165.

Prathap V, Ali K, Singh A, Vishwakarma C, Krishnan V, Chinnusamy V, Tyagi A. 2019. Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry142, 440–451.

Rohit J, Wani S H, Balwant S, Abhishek B, Dar Z A, Lone A A, Ashwani P, Singla-Pareek S L. 2016. Transcription factors and plants response to drought stress: Current understanding and future directions. Frontiers in Plant Science7, 1029.

Rotundo J L, Westgate M E. 2009. Meta-analysis of environmental effects on soybean seed composition. Field Crops Research110, 147–156.

Sadak M. 2022. Nitric oxide and hydrogen peroxide as signaling molecules for better growth and yield of wheat plant exposed to water deficiency. Egyptian Journal of Chemistry65, 209–223.

Sadak M, El-Bassiouny H, Mahfouz S, El-Enany M, Elewa T. 2022. Use of thiamine, pyridoxine and biostimulant for better yield of wheat plants under water stress: Growth, osmoregulations, antioxidantive defense and protein pattern. Egyptian Journal of Chemistry66, 407–424.

Sadak M S, Ahmed M M R M. 2016. Physiological role of cyanobacteria and glycinebetaine on wheat plant grown under salinity stress. International Journal of PharmTech Research9, 78–92.

Sadak M S, El-Enany M, Bakry B, Abdallah M, El-Bassiou H M S. 2020. Signal molecules improving growth, yield and biochemical aspects of wheat cultivars under water stress. Asian Journal of Plant Sciences19, 35–53.

Sadak M S, Orabi S A. 2015. Improving thermo tolerance of wheat plant by foliar application of citric acid or oxalic acid. International Journal of ChemTech Research8, 333–345.

Saeidi M, Abdoli M. 2015. Effect of drought stress during grain filling on yield and its components, gas exchange variables, and some physiological traits of wheat cultivars. Journal of Agricultural Science and Technology17, 885–898.

Singh S, Singh G, Singh P, Singh N. 2008. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry108, 130–139.

Tetlow I J. 2006. Understanding storage starch biosynthesis in plants: A means to quality improvement. Canadian Journal of Botany84, 1167–1185.

Triboi E, Triboi-Blondel A M. 2002. Productivity and grain or seed composition: A new approach to an old problem-invited paper. European Journal of Agronomy16, 163–186.

Ullah A, Zhao C, Zhang M, Sun C, Liu X, Hu J, Zeeshan M, Zaid A, Dai T, Tian Z. 2023. Nitrogen enhances the effect of pre-drought priming against post-anthesis drought stress by regulating starch and protein formation in wheat. Physiologia Plantarum175, e13907.

Wang X, Huang M, Zhou Q, Cai J, Dai T B, Cao W X, Jiang D. 2016. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany132, 175–182.

Wang X, Vignjevic M, Jiang D, Jacobsen S, Wollenweber B. 2014. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett. Journal of Experimental Botany65, 6441–6456.

Wang X, Zhang X, Chen J, Wang X, Cai J, Zhou Q, Dai T, Cao W, Jiang D. 2018. Parental drought-priming enhances tolerance to post-anthesis drought in offspring of wheat. Frontiers in Plant Science9, 261.

Weegels P L, Pijpekamp A M V D, Graveland A, Hamer R J, Schofield J D. 1996. Depolymerisation and re-polymerisation of wheat glutenin during dough processing. I. Relationships between glutenin macropolymer content and quality parameters. Journal of Cereal Science23, 103–111.

Yang T, Wang Y, Jiang J, Wang P, Zhong Y, Zhou Q, Wang X, Cai J, Huang M, Jiang D, Dai T, Cao W. 2023. Influence of High-Molecular-Weight glutenin subunit on components and multiscale structure of gluten and dough quality in soft wheat. Journal of Agricultural and Food Chemistry71, 4943–4956.

Yang J, Zhang J, Wang Z, Zhu Q, Liu L. 2004. Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta220, 331–343.

Zeng J, Li G, Gao H, Ru Z. 2011. Comparison of A and B starch granules from three wheat varieties. Molecules16, 10570–10591.

Zhang X X, Cai J, Wollenweber B, Liu F L, Dai T B, Cao W X, Jiang D. 2013. Multiple heat and drought events affect grain yield and accumulations of high molecular weight glutenin subunits and glutenin macropolymers in wheat. Journal of Cereal Science57, 134–140.

Zhao K, Tao Y, Liu M, Yang D, Zhu M, Ding J, Zhu X, Guo W, Zhou G, Li C. 2022. Does temporary heat stress or low temperature stress similarly affect yield, starch, and protein of winter wheat grain during grain filling? Journal of Cereal Science103, 103408.

[1] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[2] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information unravels the mechanisms of improved drought tolerance by drought-priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[3] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[4] Jinpeng Li, Siqi Wang, Zhongwei Li, Kaiyi Xing, Xuefeng Tao, Zhimin Wang, Yinghua Zhang, Chunsheng Yao, Jincai Li. Effects of micro-sprinkler irrigation and topsoil compaction on winter wheat grain yield and water use efficiency in the Huaibei Plain[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[5] Baohua Liu, Ganqiong Li, Yongen Zhang, Ling Zhang, Dianjun Lu, Peng Yan, Shanchao Yue, Gerrit Hoogenboom, Qingfeng Meng, Xinping Chen. Optimizing management strategies to enhance wheat productivity in the North China Plain under climate change[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[6] Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang. Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones[J]. >Journal of Integrative Agriculture, 2025, 24(8): 0-.
[7] Xianhong Zhang, Zhiling Wang, Danmei Gao, Yaping Duan, Xin Li, Xingang Zhou. Wheat cover crop accelerates the decomposition of cucumber root litter by altering the soil microbial community[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2857-2868.
[8] Zhongwei Tian, Yanyu Yin, Bowen Li, Kaitai Zhong, Xiaoxue Liu, Dong Jiang, Weixing Cao, Tingbo Dai. Optimizing planting density and nitrogen application to mitigate yield loss and improve grain quality of late-sown wheat under rice–wheat rotation[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2558-2574.
[9] Honglu Wang, Hui Zhang, Qian Ma, Enguo Wu, Aliaksandr Ivanistau, Baili Feng. Effect of nitrogen fertilizer on proso millet starch structure, pasting, and rheological properties[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2575-2588.
[10] Abdoul Kader Mounkaila Hamani, Sunusi Amin Abubakar, Yuanyuan Fu, Djifa Fidele Kpalari, Guangshuai Wang, Aiwang Duan, Yang Gao, Xiaotang Ju. The coupled effects of various irrigation schedules and split nitrogen fertilization modes on post-anthesis grain weight variation, yield, and grain quality of drip-irrigated winter wheat (Triticum aestivum L.) in the North China Plain[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2123-2137.
[11] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[12] Tao Liu, Jianliang Wang, Jiayi Wang, Yuanyuan Zhao, Hui Wang, Weijun Zhang, Zhaosheng Yao, Shengping Liu, Xiaochun Zhong, Chengming Sun. Research on the estimation of wheat AGB at the entire growth stage based on improved convolutional features[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1403-1423.
[13] Yonghui Fan, Yue Zhang, Yu Tang, Biao Xie, Wei He, Guoji Cui, Jinhao Yang, Wenjing Zhang, Shangyu Ma, Chuanxi Ma, Haipeng Zhang, Zhenglai Huang.
Response of wheat to winter night warming based on physiological and transcriptome analyses
[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1044-1064.
[14] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[15] Zimeng Liang, Xidan Cao, Rong Gao, Nian Guo, Yangyang Tang, Vinay Nangia, Yang Liu. Brassinosteroids alleviate wheat floret degeneration under low nitrogen stress by promoting the redistribution of sucrose from stems to spikes[J]. >Journal of Integrative Agriculture, 2025, 24(2): 497-516.
No Suggested Reading articles found!