Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Multi-trait genome-wide association studies reveal forage yield-related candidate genes and favorable haplotypes in hulled oats (Avena sativa)

Jin Li1, Xu Zhao1, Jingbo Yu1, Qingping Zhou1, Shiyong Chen1, 2#

1 Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China

2 College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China

 Highlights 

1. Fourteen stable QTLs and 35 candidate genes related to six forage yield traits were identified using RTM- and Blink-GWAS.

2. Favorable haplotypes with consistent phenotypic effects provide targets for oat yield improvement.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目的燕麦(Avena sativa)是一种重要的世界性栽培的粮饲兼用作物。在全球气候变化和人口增长的背景下,优异燕麦品种的培育对维护全球食物安全具有重要的作用。作为重要的饲用作物,目前关于其饲草产量相关性状的遗传基础研究还较少,严重阻碍了其分子育种的研究。本研究旨在借助全基因组关联分析(GWAS解析皮燕麦中与饲草产量相关性状的遗传基础,为饲用燕麦的分子育种提供理论依据。【方法】本研究以来自全球的266份皮燕麦种质材料为研究对象,在5不同生态环境下对株高、茎长、穗长、旗叶长、旗叶宽和茎粗6饲草产量相关性状进行表型测定。利用高通量重测序技术获得34,896个高质量SNP位点,并分别采用RTM-GWASBlink-GWAS方法开展GWAS分析【结果】研究结果表明6个饲草产量相关性状在不同环境下均表现出较大变异和相对较高的遗传力,性状之间呈显著正相关(r = 0.23~0.93)。GWAS分析共鉴定54SNP连锁不平衡区块(SNPLDBs)和52个与农艺性状显著相关的SNP位点,共定位到105QTLs,其中14QTLs在多个环境和模型中均重复出现,具有高度稳定性。进一步对代表性QTLs进行连锁不平衡分析,构建了对应的单倍型区块,发现相关的性状均存在具有显著表型差异的优异单倍型,且表现出良好的环境稳定性。同时,结合QTLs区间基因注释结果、转录组数据及同源比对信息,最终筛选鉴定出35个候选基因,涉及信号转导、转录调控、物质运输、激素响应与细胞发育等多个生物学过程。其中多个QTLs研究报道的燕麦株高茎长等QTLs高度相关【结论】综上,本研究通过GWAS揭示了皮燕麦中6饲草产量相关性状的遗传基础,鉴定了相关的QTL、优异单倍型与候选基因,研究结果为燕麦分子设计育种和优异等位变异的挖掘利用提供了重要的参考【创新性】本研究联合两种GWAS模型进行饲用燕麦多性状综合分析,显著提升了QTL定位的准确性与稳定性;同时结合转录组信息和连锁区块进行单倍型优选,鉴定出了可用于饲用燕麦分子育种的目标位点和关键候选基因。



Abstract  

Hulled oat is an important cereal crop for both animal feed and human consumption, as climate change accelerates and the world's population grows, improving oat breeding is crucial to ensure a stable food supply. Genome-wide association studies (GWAS) are instrumental in pinpointing single nucleotide polymorphisms (SNPs) associated with phenotypic variations within germplasm collections. This study assessed six crucial agronomic traits (plant height, stem length, spike length, flag leaf length, flag leaf width, and stem diameter) across five environments in 266 globally sourced hulled oat varieties, employing 34,896 SNPs for a comprehensive genetic analysis via restricted two-stage multi-locus multi-allele (RTM)- and Bayesian-information and linkage-disequilibrium iteratively nested keyway (Blink)-GWAS methodologies. Our analysis identified 54 SNP linkage disequilibrium blocks (SNPLDBs), and 52 SNPs associated with the six agronomic traits. A total of 105 quantitative trait loci (QTLs) were identified within a ±2 Mb physical region surrounding these loci. Of these, 14 stable QTLs were consistently detected across multiple environments and by both GWAS methods. Haplotype analysis within these QTL regions identified three to five haplotype alleles, each significantly influencing the phenotypic variation of traits across different environments. Combining gene annotation, literature review, and transcriptome data, we identified 35 candidate genes involved in signal transduction, transcriptional regulation, metabolism, and cell development. These findings provide valuable genetic resources for enhancing agronomic traits and yield in oat breeding programs under diverse environmental conditions.

Keywords:  Forage oats       Agronomic trait       GWAS       QTL       Haplotypes       Candidate genes  
Online: 24 June 2025  
Fund: 

This work was supported by the Key Research & Development Program of Sichuan province (2021YFYZ0013, 2023NZZJ0002), and the Double First-Class program of Southwest Minzu University (CX2023017). 

About author:  #Correspondence: Shiyong Chen; E-mail: chensy@swun.edu.cn

Cite this article: 

Jin Li, Xu Zhao, Jingbo Yu, Qingping Zhou, Shiyong Chen. 2025. Multi-trait genome-wide association studies reveal forage yield-related candidate genes and favorable haplotypes in hulled oats (Avena sativa). Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.025

Alemu A, Åstrand J, Montesinos-López O A, Isidro y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri R R, Carlsson A S, Ceplitis A, Crossa J, Ortiz R, Chawade A. 2024. Genomic selection in plant breeding: Key factors shaping two decades of progress. Molecular Plant, 17, 552578.

Argenta J, Pacheco M T, Mariath J E D, Federizzi L C. 2022. Morphological, anatomical, and chemical characteristics associated with lodging resistance in Avena sativa. Euphytica, 218, 22.

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.

Bollier N, Gonzalez N, Chevalier C, Hernould M. 2022. Zinc Finger-Homeodomain and Mini Zinc Finger proteins are key players in plant growth and responses to environmental stresses. Journal of Experimental Botany, 73, 4662–4673.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

Chand S, Indu, Singhal R K, Govindasamy P. 2022. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass and Forage Science, 77, 11–32.

Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4, 7.

Chen L, Xu Z, Fan X, Zhou Q, Yu Q, Liu X, Liao S, Jiang C, Lin D, Ma F, Feng B, Wang T. 2022. Genetic dissection of quantitative trait loci for flag leaf size in bread wheat (Triticum aestivum). Frontiers in Plant Science, 13, 1047899. 

Chen Y, Xiong Y, Hong H, Li G, Gao J, Guo Q, Sun R, Ren H, Zhang F, Wang J, Song J, Qiu L. 2023. Genetic dissection of and genomic selection for seed weight, pod length, and pod width in soybean. Crop Journal, 11, 832–841.

Collins H M, Burton R A, Topping D L, Liao M, Bacic A, Fincher G B. 2010. REVIEW: Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chemistry, 87, 272–282.

Dai K, Wang X, Liu H, Qiao P, Wang J, Shi W, Guo J, Diao X. 2024. Efficient identification of QTL for agronomic traits in foxtail millet (Setaria italica) using RTM- and MLM-GWAS. Theoretical and Applied Genetics, 137, 18.

De Koeyer D, Tinker N, Wight C, Deyl J, Burrows V, O’donoughue L, Lybaert A, Molnar S J, Armstrong K C, Fedak G, Wesenberg D M, Rossnagel B G, McElroy A R. 2004. A molecular linkage map with associated QTLs from a hulless× covered spring oat population. Theoretical and Applied Genetics, 108, 1285–1298.

De Koeyer D L, Phillips R L, Stuthman D D. 2001. Allelic shifts and quantitative trait loci in a recurrent selection population of oat. Crop Science, 41, 1228–1234.

Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur A K, Kumar V, Singh B. 2024. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Molecular Biology Reports, 51, 508.

Dong S S, He W M, Ji J J, Zhang C, Guo Y, Yang T L. 2021. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Briefings in Bioinformatics, 22, bbaa227.

Freyman W A, Höhna S. 2018. Stochastic character mapping of state-dependent diversification reveals the tempo of evolutionary decline in self-compatible onagraceae lineages. Systematic Biology, 68, 505–519.

Frichot E, François O. 2015. LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution, 6, 925–929.

Gilissen L, van der Meer I M, Smulders M J M. 2016. Why oats are safe and healthy for celiac disease patients. Medical Sciences, 4, 21.

Groh S, Kianian S F, Phillips R L, Rines H W, Stuthman D D, Wesenberg D M, Fulcher R G. 2001. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theoretical and Applied Genetics, 103, 9–18.

Günthardt-Goerg M S, Kuster T M, Arend M, Vollenweider P. 2013. Foliage response of young central European oaks to air warming, drought and soil type. Plant Biology, 15, 185197.

Guo B, Wu B. 2019. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data. Bioinformatics, 35, 1366–1372.

Guo Y, Zhao G, Gao X, Zhang L, Zhang Y, Cai X, Yuan X, Guo X. 2023. CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement. Planta, 258, 36.

Hao Y, Kong F, Wang L, Zhao Yu, Li M, Che N, Li S, Wang M, Hao M, Zhang X, Zhao Yan. 2024. Genome-wide association study of grain micronutrient concentrations in bread wheat. Journal of Integrative Agriculture, 23, 1468–1480.

Hao Y, Liu X, Wang Q, Wang S, Li Q, Wang Y, Guo Z, Wu T, Yang Q, Bai Y, Cui Y, Yang P, Wang W, Teng Z, Liu D, Guo K, Liu D, Zhang J, Zhang Z. 2025. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background. Journal of Integrative Agriculture, 24, 467–479.

Hammond R W, Zhao Y. 2009. Modification of tobacco plant development by sense and antisense expression of the tomato viroid-induced AGC VIIIa protein kinase PKV suggests involvement in gibberellin signaling. BMC Plant Biology, 9, 108.

He J, Meng S, Zhao T, Xing G, Yang S, Li Y, Guan R, Lu J, Wang Y, Xia Q, Yang B, Gai J. 2017. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theoretical and Applied Genetics, 130, 2327–2343.

Herrmann M H, Yu J, Beuch S, Weber W E. 2014. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breeding, 133, 588–601.

Holland J B, Moser H S, O'Donoughue L S, Lee M. 1997. QTLs and epistasis associated with vernalization responses in oat. Crop Science, 37, 13061316.

Huang M, Liu X, Zhou Y, Summers R M, Zhang Z. 2018. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8, giy154.

Kamal N, Tsardakas Renhuldt N, Bentzer J, Gundlach H, Haberer G, Juhasz A, Lux T, Bose U, Tye-Din J A, Lang D, van Gessel N, Reski R, Fu Y B, Spegel P, Ceplitis A, Himmelbach A, Waters A J, Bekele W A, Colgrave M L, Hansson M, et al. 2022. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 606, 113–119.

Kebede A Z, Admassu-Yimer B, Bekele W A, Gordon T, Bonman J M, Babiker E, Jin Y, Gale S, Wight C P, Tinker N A, Menzies J G, Beattie A D, Mitchell Fetch J, Fetch T G, Esvelt Klos K, McCartney C A. 2020. Mapping of the stem rust resistance gene Pg13 in cultivated oat. Theoretical and Applied Genetics, 133, 259–270.

Kianian S F, Phillips R L, Rines H W, Fulcher R G, Webster F H, Stuthman D D. 2000. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n=6x=42). Theoretical and Applied Genetics, 101, 1039–1048.

Lee K, Park S J, Han J H, Jeon Y, Pai H S, Kang H. 2019. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC Plant Biology, 19, 244.

Li H, Durbin R. 2009a. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009b. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 20782079.

Li L, Zheng X, Wang J, Zhang X, He X, Xiong L, Song S, Su J, Diao Y, Yuan Z, Zhang Z, Hu Z. 2023. Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids. Nature Communications, 14, 3930.

Liu L, Qu P, Zhou Y, Li H, Liu Y, Zhang M, Zhang L, Zhao C, Zhang S, Pang B. 2024. Consensus linkage map construction and QTL mapping for eight yield-related traits in wheat using the BAAFS Wheat 90K SNP array. Journal of Integrative Agriculture, 23, 3641–3656.

Liu Y, Liu Y, He Y, Yan Y, Yu X, Ali M, Pan C, Lu G. 2023. Cytokinin-inducible response regulator SlRR6 controls plant height through gibberellin and auxin pathways in tomato. Journal of Experimental Botany, 74, 4471–4488.

Loskutov I G, Khlestkina E K. 2021. Wheat, barley, and oat breeding for health benefit components in grain. Plants, 10, 86.

Meier I C, Leuschner C. 2008. Leaf size and leaf area index in Fagus sylvatica forests: competing effects of precipitation, temperature, and nitrogen availability. Ecosystems, 11, 655669.

Murphy J P, Hoffman L A. 1992. The origin, history, and production of oat. In Marshall HG, Sorrells ME (eds) Oat science and technology. ASA and CSSA, Madison, pp. 1–28.

Ning Q, Jian Y, Du Y, Li Y, Shen X, Jia H, Zhao R, Zhan J, Yang F, Jackson D, Liu L, Zhang Z. 2021. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nature Communications, 12, 5832.

Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, et al. 2022. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 54, 1248–1258.

Romanowski A, Furniss J J, Hussain E, Halliday K J. 2021. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development. Plant Physiology, 18, 1220–1239.

Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed H I, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger S G, Poland J, Tiwari V. 2023. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Communications Biology, 6, 835.

Sinha P, Singh V K, Saxena R K, Khan A W, Abbai R, Chitikineni A, Desai A, Molla J, Upadhyaya H D, Kumar A, Varshney R K. 2020. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.). Plant Biotechnology Journal, 18, 2482–2490.

Sood V K, Sanadya S K, Kumar S, Chand S, Kapoor R. 2022. Health benefits of oat (Avena sativa) and nutritional improvement through plant breeding interventions. Crop & Pasture Science, 74, 993–1013.

Stewart D, McDougall G. 2014. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. British Journal of Nutrition, 112, S50–57.

Sul J H, Martin L S, Eskin E. 2018. Population structure in genetic studies: Confounding factors and mixed models. PLoS Genetics, 14, e1007309.

Tian H, Zhou Q, Liu W, Zhang J, Chen Y, Jia Z, Shao Y, Wang H. 2022. Responses of photosynthetic characteristics of oat flag leaf and spike to drought stress. Frontiers in Plant Science, 13, 917528.

Tumino G, Voorrips R E, Morcia C, Ghizzoni R, Germeier C U, Paulo M J. Terzi V, Smulders M J M. 2017. Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica, 213, 163.

Wang G, Xu H, Zhao H, Wu Y, Gao X, Chai Z, Liang Y, Zhang X, Zheng R, Yang Q, Li Y. 2023. Screening optimal oat varieties for cultivation in arid areas in China: A comprehensive evaluation of agronomic traits. Agronomy, 13, 2266.

Wang J, Zhang Z. 2021. GAPIT version 3: Boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics, 19, 629–640.

Wang Y, Mu C, Li X, Duan C, Wang J, Lu X, Li W, Xu Z, Sun S, Zhang A, Zhou Z, Wen S, Hao Z, Han J, Qu J, Du W, Li F, Weng J. 2025. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize. Journal of Integrative Agriculture, 24, 453–466.

Wight C P, Blake V C, Jellen E N, Yao E, Sen T Z, Tinker N A. 2024. One hundred years of comparative genetic and physical mapping in cultivated oat (Avena sativa). Crop & Pasture Science, 75, CP23246.

Wu H, Song X, Waqas-Amjid M, Chen C, Zhang D, Guo W, 2024. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.). Journal of Integrative Agriculture, 23, 3406–3418.

Wu Y, Zheng Z, Visscher P M, Yang J. 2017. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biology, 18, 86.

Yan H, Zhou P, Peng Y, Bekele W A, Ren C, Tinker NA, Peng Y. 2020a. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. Theoretical and Applied Genetics, 133, 3365–3380.

Yan X, Zhao L, Ren Y, Zhang N, Dong Z, Chen F. 2020b. Identification of genetic loci and a candidate gene related to flag leaf traits in common wheat by genome-wide association study and linkage mapping. Molecular Breeding, 40, 58.

Yue Z, Wang Z, Yao Y, Liang Y, Li J, Yin K, Li R, Li Y, Ouyang Y, Xiong L, Hu H. 2024. Variation in WIDTH OF LEAF AND GRAIN contributes to grain and leaf size by controlling LARGE2 stability in rice. Plant Cell, 36, 32013218.

Zhang C, Dong S S, Xu J Y, He W M, Yang T L. 2019. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 35, 1786–1788.

Zhang Z, Li Z, He F, Lü J, Xie B, Yi X, Li J, Li J, Song J, Pu Z, Ma J, Peng Y, Chen G, Wei Y, Zheng Y, Li W. 2023. Genome-wide association and linkage mapping strategies reveal the genetic loci and candidate genes of important agronomic traits in Sichuan wheat. Journal of Integrative Agriculture, 22, 3380–3393.

Zhao J, Bayer P E, Ruperao P, Saxena R K, Khan A W, Golicz A A, Nguyen H T, Batley J, Edwards D, Varshney R K. 2020. Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnology Journal, 18, 1946–1954.

Zimmer C M, McNish I G, Esvelt Klos K, Eickholt D P, Arruda K M A, Pacheco M T, Smith K P, Federizzi L C. 2022. Genomewide association mapping for kernel shape and its association with β‐glucan content in oats. Crop Science, 61, 39863999. 

[1] Shengzhong Zhang, Xiaohui Hu, Feifei Wang, Huarong Miao, Chu Ye, Weiqiang Yang, Wen Zhong, Jing Chen. Identification of QTLs for plant height and branching-related traits in cultivated peanut[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2511-2524.
[2] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[3] Berhane S. Gebregziabher, Shengrui Zhang, Jing Li, Bin Li, Junming Sun. Identification of genomic regions and candidate genes underlying carotenoid accumulation in soybean using next-generation sequen-cing based bulk segregant analysis[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2063-2079.
[4] Bingyan Huang, Hua Liu, Yuanjin Fang, Lijuan Miao, Li Qin, Ziqi Sun, Feiyan Qi, Lei Chen, Fengye Zhang, Shuanzhu Li, Qinghuan Zheng, Lei Shi, Jihua Wu, Wenzhao Dong, Xinyou Zhang. Identification of oil content QTLs on Arahy12 and Arahy16, and development of KASP markers in cultivated peanut (Arachis hypogaea L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2096-2105.
[5] Deyin Zhang, Xiaolong Li, Fadi Li, Xiaoxue Zhang, Yuan Zhao, Yukun Zhang, Zongwu Ma, Huibin Tian, Xiuxiu Weng, Weimin Wang. Genome-wide association study identifies novel loci associated with feed efficiency traits in Hu lambs[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1259-1269.
[6] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[7] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[8] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[9] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[10] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

[11] Yongchao Hao, Fanmei Kong, Lili Wang, Yu Zhao, Mengyao Li, Naixiu Che, Shuang Li, Min Wang, Ming Hao, Xiaocun Zhang, Yan Zhao.

Genome-wide association study of grain micronutrient concentrations in bread wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1468-1480.

[12] Minghao Cai, Xuhui Li, Zhi Liang, Jie Wang, Delin Li, Zhipeng Yuan, Riliang Gu, Jianhua Wang, Li Li.

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L. [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1118-1133.

[13] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[14] Hongxiang Zheng, Yingying Dang, Xianmin Diao, Na Sui.

Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies [J]. >Journal of Integrative Agriculture, 2024, 23(3): 741-768.

[15] Yiwang Zhong, Xingang Li, Shasha Wang, Sansan Li, Yuhong Zeng, Yanbo Cheng, Qibin Ma, Yanyan Wang, Yuanting Pang, Hai Nian, Ke Wen. Mapping and identification of QTLs for seed fatty acids in soybean (Glycine max L.)[J]. >Journal of Integrative Agriculture, 2024, 23(12): 3966-3982.
No Suggested Reading articles found!