Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Comparative transcriptomic analysis of Chinese cabbage's defense responses to Alternaria brassicae

Qi Zeng1, Qingguo Sun1, Xinru Hou1, Lin Chen1, Ruixing Zhang1, Xue Bai1, Xifan Liu1, Xiaowu Wang2, Lugang Zhang1, Baohua Li1#

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, China

2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 

l BrERF109 is identified as a key positive regulator in Chinese cabbage against Alternaria brassicae infection.

l BrERF109 activates the expression of BrIGMT4 by binding to its promoter.

l BrERF109 increases plants’ defense against Alternaria brassicae by inducing indolic glucosinolates accumulation.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

大白菜黑斑病是由芸苔链格孢(Alternaria brassicae)引起的真菌病害,对大白菜造成严重的危害。通过转录组学的分析,我们探讨了大白菜对芸苔链格孢防御反应的分子机制。值得注意的是,我们发现BrERF109在大白菜受到芸苔链格孢侵染后显著上调。通过优化的VIGS技术,在大白菜中沉默BrERF109降低了大白菜对芸苔链格孢的抗病性,而在拟南芥中过表达BrERF109增强了对芸苔链格孢的抗病性。进一步,我们发现在大白菜中沉默BrERF109抑制了吲哚族芥子油苷基因的表达,吲哚族芥子油苷含量显著降低,而在拟南芥中过表达BrERF109增加了吲哚族芥子油苷的含量。进一步研究发现,BrERF109可以直接结合BrIGMT4的启动子,从而促进吲哚族芥子油苷的积累,积极防御芸苔链格孢的侵染。我们的研究揭示了BrERF109-BrIGMT4 调控模块在大白菜防御芸苔链格孢中的作用,并进一步为探索植物与芸苔链格孢的相互作用提供有价值的数据。



Abstract  

Black spot is a fungus disease elicited by Alternaria brassicae infection and causes devastating damage to Chinese cabbage. We explored the molecular mechanisms of Chinese cabbage’s defense responses to A. brassicae infection by comparative transcriptomic analysis. Notably, we found that the expression of BrERF109 was induced by A. brassicae infection. Silencing of BrERF109 by an optimized VIGS assay in Chinese cabbage reduced disease resistance, whereas BrERF109-overexpression in Arabidopsis enhanced disease resistance. Furthermore, silencing of BrERF109 in Chinese cabbage repressed the expression of indolic glucosinolates genes thus significantly lowered the indolic glucosinolates levels, while BrERF109-overexpression in Arabidopsis induced indolic glucosinolates accumulation. BrERF109 could directly bind the promoter of BrIGMT4, thereby promoting the indolic glucosinolates accumulation and actively defending against A. brassicae. Our study uncovered the BrERF109-BrIGMT4 regulatory module in Chinese cabbage’s defense responses to A. brassicae infection, as well as providing valuable dataset to further explore plants-A. brassicae interactions.

Keywords:  Chinese cabbage       black spot       RNA-seq       BrERF109       indolic glucosinolates  
Online: 24 June 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2022YFF1003003), National Natural Science Foundation of China (32070333), and the Key Research and Development Program of Yangling Seed Innovative Center (Ylzy-sc-04). 

About author:  Qi Zeng, E-mail: zengqi@nwafu.edu.cn; #Correspondence Baohua Li, E-mail: baohuali@nwafu.edu.cn

Cite this article: 

Qi Zeng, Qingguo Sun, Xinru Hou, Lin Chen, Ruixing Zhang, Xue Bai, Xifan Liu, Xiaowu Wang, Lugang Zhang, Baohua Li. 2025. Comparative transcriptomic analysis of Chinese cabbage's defense responses to Alternaria brassicae. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.06.024

Ahmed S S, Gong Z H, Ji J J, Yin Y X, Xiao H J, Khan M A, Rehman A, Ahmad I. 2012. Construction of the intermediate vector pVBG2307 by incorporating vital elements of expression vectors pBI121 and pBI221. Genetics and Molecular Research, 11, 3091-3104.

Al-Lami H F D, You M P, Banga S S, Barbetti M J. 2023. Novel resistances provide new avenues to manage Alternaria leaf spot (Alternaria brassicae) in Canola (Brassica napus), Mustard (B. juncea), and other Brassicaceae crops. Plant Disease, 107, 372-381.

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399.

Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T, Harris M A, Hill D P, Issel-Tarver L, Kasarskis A, Lewis S, Matese J C, Richardson J E, Ringwald M, Rubin G M, Sherlock G. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 25, 25-29.

Bai X, Zhang R, Zeng Q, Yang W, Fang F, Sun Q, Yan C, Li F, Liu X, Li B. 2024. The RNA-binding protein BoRHON1 positively regulates the accumulation of aliphatic glucosinolates in Cabbage. International Journal of Molecular Sciences, 25, 5314.

Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101-106.

Birkenbihl R P, Diezel C, Somssich I E. 2012. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology, 159, 266-285.

Chen C, Wu Y, Li J, Wang X, Zeng Z, Xu J, Liu Y, Feng J, Chen H, He Y, Xia R. 2023. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant, 16, 1733-1742.

Chen H, Wang T, He X, Cai X, Lin R, Liang J, Wu J, King G, Wang X. 2022. BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Research, 50, D1432-d1441.

Chen J, Wang H, Li Y, Pan J, Hu Y, Yu D. 2018. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. Journal of Integrative Plant Biology, 60, 956-969.

Chen L, Li C, Zhang J, Li Z, Zeng Q, Sun Q, Wang X, Zhao L, Zhang L, Li B. 2024. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress. Journal of Integrative Agriculture, 23, 2255-2269.

Chen L, Zhang L, Xiang S, Chen Y, Zhang H, Yu D. 2021. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany, 72, 1473-1489.

Chen W, Zhang Q, Kong J, Hu F, Li B, Wu C, Qin C, Zhang P, Shi N, Hong Y. 2015. MR VIGS: microRNA-based virus-induced gene silencing in plants. Methods in Molecular Biology, 1287, 147-157.

Clay N K, Adio A M, Denoux C, Jander G, Ausubel F M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95-101.

Clough S J, Bent A F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.

Dai Y, Zhang L, Sun X, Li F, Zhang S, Zhang H, Li G, Fang Z, Sun R, Hou X, Zhang S. 2022. Transcriptome analysis reveals anthocyanin regulation in Chinese cabbage (Brassica rapa L.) at low temperatures. Scientific Reports, 12, 6308.

Dangl J L, Jones J D. 2001. Plant pathogens and integrated defence responses to infection. Nature, 411, 826-833.

Del Carmen Martínez-Ballesta M, Moreno D A, Carvajal M. 2013. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. International Journal of Molecular Sciences, 14, 11607-11625.

Dhiman S, Singh S, Varma A, Goel A. 2021. Phytofabricated zinc oxide nanoparticles as a nanofungicide for management of Alternaria blight of Brassica. Biometals, 34, 1275-1293.

Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology, 40, 750-776.

Frerigmann H, Gigolashvili T. 2014. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Molecular Plant, 7, 814-828.

Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. 2022. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. The Plant Journal, 111, 473-495.

Ghosh S K, Banerjee S, Pal S, Chakraborty N. 2018. Encountering epidemic effects of leaf spot disease (Alternaria brassicae) on Aloe vera by fungal biocontrol agents in agrifields-An ecofriendly approach. PLoS One, 13, e0193720.

Gong B Q, Wang F Z, Li J F. 2020. Hide-and-seek: chitin-triggered plant immunity and fungal counterstrategies. Trends in Plant Science, 25, 805-816.

Guo L, Li C, Jiang Y, Luo K, Xu C. 2020. Heterologous expression of poplar WRKY18/35 paralogs in Arabidopsis reveals their antagonistic regulation on pathogen resistance and abiotic stress tolerance via variable hormonal pathways. International Journal of Molecular Sciences, 21, 5440.

Hao D, Ohme-Takagi M, Sarai A. 1998. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry, 273, 26857-26861.

Javed T, Gao S J. 2023. WRKY transcription factors in plant defense. Trends in Genetics, 39, 787-801.

Kamble S, Mukherjee P K, Eapen S. 2016. Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines. Physiology and Molecular Biology of Plants, 22, 69-76.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36, D480-484.

Kliebenstein D J, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiology, 126, 811-825.

Li J, Meng Y, Zhang K, Li Q, Li S, Xu B, Georgiev M I, Zhou M. 2021. Jasmonic acid-responsive RRTF1 transcription factor controls DTX18 gene expression in hydroxycinnamic acid amide secretion. Plant Physiology, 185, 369-384.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402-408.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Madloo P, Lema M, Francisco M, Soengas P. 2019. Role of major glucosinolates in the defense of Kale against Sclerotinia sclerotiorum and Xanthomonas campestris pv. campestris. Phytopathology, 109, 1246-1256.

Meena P D, Awasthi R, Chattopadhyay C, Kolte S J, Kumar A. 2016. Alternaria blight: a chronic disease in rapeseed-mustard. Journal of Oilseed Brassica, 1, 1-11.

Michereff S J, Noronha M A, Filha M S X, Câmara M P S, Reis A. 2012. Survey and prevalence of species causing Alternaria leaf spots on brassica species in Pernambuco. Horticultura Brasileira, 30, 345-348.

Mir Z A, Ali S, Shivaraj S M, Bhat J A, Singh A, Yadav P, Rawat S, Paplao P K, Grover A. 2020. Genome-wide identification and characterization of chitinase gene family in Brassica juncea and Camelina sativa in response to Alternaria brassicae. Genomics, 112, 749-763.

Mondal K K, Chatterjee S C, Viswakarma N, Bhattacharya R C, Grover A. 2003. Chitinase-mediated inhibitory activity of Brassica transgenic on growth of Alternaria brassicae. Current Microbiology, 47, 171-173.

Nowakowska M, Wrzesinska M, Kaminski P, Szczechura W, Lichocka M, Tartanus M, Kozik E U, Nowicki M. 2019. Alternaria brassicicola-Brassicaceae pathosystem: insights into the infection process and resistance mechanisms under optimized artificial bio-assay. European Journal of Plant Pathology, 153, 131-151.

Nowicki M, Nowakowska M, Niezgoda A, Kozik E. 2012. Alternaria black spot of Crucifers: symptoms, importance of disease, and perspectives of resistance breeding. Vegetable Crops Research Bulletin, 76, 5-19.

Parada R Y, Sakuno E, Mori N, Oka K, Egusa M, Kodama M, Otani H. 2008. Alternaria brassicae produces a host-specific protein toxin from germinating spores on host leaves. Phytopathology, 98, 458-463.

Rajarammohan S. 2023. Transcriptome analysis of the necrotrophic pathogen Alternaria brassicae reveals insights into its pathogenesis in Brassica juncea. Microbiology Spectrum, 11, e0293922.

Rajarammohan S, Kumar A, Gupta V, Pental D, Pradhan A K, Kaur J. 2017. Genetic architecture of resistance to Alternaria brassicae in Arabidopsis thaliana: QTL mapping reveals two major resistance-conferring loci. Frontiers in Plant Science, 8, 260.

Rajarammohan S, Paritosh K, Pental D, Kaur J. 2019a. Comparative genomics of Alternaria species provides insights into the pathogenic lifestyle of Alternaria brassicae-a pathogen of the Brassicaceae family. Bmc Genomics, 20, 1036.

Rajarammohan S, Pental D, Kaur J. 2019b. Near-complete genome assembly of Alternaria brassicae-a necrotrophic pathogen of Brassica crops. Molecular Plant-Microbe Interactions, 32, 928-930.

Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504.

Sharma G, Dinesh Kumar V, Haque A, Bhat SR, Prakash S, Chopra VL. 2002. Brassica coenospecies: a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica, 125, 411-417.

Shen Y, Wang J, Shaw R K, Sheng X, Yu H, Branca F, Gu H. 2023. Comparative transcriptome and targeted metabolome profiling unravel the key role of phenylpropanoid and glucosinolate pathways in defense against Alternaria brassicicola in Broccoli. Journal of Agricultural and Food Chemistry, 71, 6499-6510.

Shinya T, Nakagawa T, Kaku H, Shibuya N. 2015. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 26, 64-71.

Sønderby I E, Geu-Flores F, Halkier B A. 2010. Biosynthesis of glucosinolates – gene discovery and beyond. Trends in Plant Science, 15, 283-290.

Tang Y, Lai Y, Liu Y. 2013. Virus-induced gene silencing using artificial miRNAs in Nicotiana benthamiana. Methods in Molecular Biology, 975, 99-107.

Tao H, Miao H, Chen L, Wang M, Xia C, Zeng W, Sun B, Zhang F, Zhang S, Li C, Wang Q. 2022. WRKY33-mediated indolic glucosinolate metabolic pathway confers resistance against Alternaria brassicicola in Arabidopsis and Brassica crops. Journal of Integrative Plant Biology, 64, 1007-1019.

Vahabi K, Reichelt M, Scholz S S, Furch A C U, Matsuo M, Johnson J M, Sherameti I, Gershenzon J, Oelmüller R. 2018. Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformsopora Indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science, 9, 626.

Wang H, Guo Y, Luo Z, Gao L, Li R, Zhang Y, Kalaji H M, Qiang S, Chen S. 2022a. Recent advances in Alternaria phytotoxins: a review of their occurrence, structure, bioactivity, and biosynthesis. Journal of Fungi (Basel), 8, 168.

Wang H, Zheng Y, Xiao D, Li Y, Liu T, Hou X. 2022b. BcWRKY33A enhances resistance to Botrytis cinerea via activating BcMYB51-3 in non-heading Chinese cabbage. International Journal of Molecular Sciences, 23, 8222.

Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. 2020. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. Planta, 252, 42.

Yang L, Zhang Y, Guan R, Li S, Xu X, Zhang S, Xu J. 2020. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of Integrative Plant Biology, 62, 1780-1796.

Zhang R, Liu Y, Pan Q, Khan A, Bai X, Ali M, Yang W, Zhang L, Li B. 2023. The effects of short term blue light treatment on promoting nutrition value in Chinese cabbage. Food Chemistry, 412, 135542.

Zhao M, Ma L, Song N, Cheng J, Zhao Z, Wu J. 2022. The regulation of Alternaria alternata resistance by LRR-RK4 through ERF109, defensin19 and phytoalexin scopoletin in Nicotiana attenuata. Plant Science, 323, 111414.

Zheng Z, Qamar S A, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48, 592-605.

Zhu Y, Zhang X, Zhang Q, Chai S, Yin W, Gao M, Li Z, Wang X. 2022. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Molecular Plant Pathology, 23, 1415-1432.

[1] Changning Wei, Hui Cao, Chenxu Li, Hongyu Song, Qing Liu, Xingquan Zhu, Wenbin Zheng. Differences in N6-methyladenosine (m6A) methylation among the three major clonal lineages of Toxoplasma gondii tachyzoites[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2810-2825.
[2] Shan Wang, Kailin Shi, Yufan Xiao, Wei Ma, Yiguo Hong, Daling Feng, Jianjun Zhao. The circadian clock shapes diurnal gene expression patterns linked to glucose metabolic processes in Chinese cabbage[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2155-2170.
[3] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[4] Xiaochun Wei, Yuanlin Zhang, Yanyan Zhao, Weiwei Chen, Ujjal Kumar Nath, Shuangjuan Yang, Henan Su, Zhiyong Wang, Wenjing Zhang, Baoming Tian, Fang Wei, Yuxiang Yuan, Xiaowei Zhang. Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1092-1107.
[5] Jiamao Gu, Pengkun Liu, Wenting Nie, Zhijun Wang, Xiaoyu Cui, Hongdan Fu, Feng Wang, Mingfang Qi, Zhouping Sun, Tianlai Li, Yufeng Liu. Abscisic acid alleviates photosynthetic damage in the tomato ABA-deficient mutant sitiens and protects photosystem II from damage via the WRKY22–PsbA complex under low-temperature stress[J]. >Journal of Integrative Agriculture, 2025, 24(2): 546-563.
[6] Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li. Physiological and transcriptome analyses of Chinese cabbage in response to drought stress[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2255-2269.
[7] Yuan Gao, Fuxia Bai, Qi Zhang, Xiaoya An, Zhaofei Wang, Chuzhao Lei, Ruihua Dang. Dynamic transcriptome profiles and novel markers in bovine spermatogenesis revealed by single-cell sequencing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2362-2378.
[8] Ying Ding, Qiong Zhi, Qisheng Zuo, Kai Jin, Wei Han, Bichun Li.

Transcriptome-based analysis of key signaling pathways affecting the formation of primordial germ cell in chickens [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1644-1657.

[9] Liping Song, Xia Li, Liguang Tang, Chuying Yu, Bincai Wang, Changbin Gao, Yanfeng Xie, Xueli Zhang, Junliang Wang, Chufa Lin, Aihua Wang.

Fine mapping and cloning of the sterility gene Bra2Ms in non-heading Chinese cabbage (Brassica rapa ssp. chinensis) [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1195-1204.

[10] Jing Zhang, Zhaochen Wu, Shuo Li, He Huang, Suning Liu, Weimin Liu, Xiaoming Zhao, Jianzhen Zhang.

Development and formation of wing cuticle based on transcriptomic analysis in Locusta migratoria during metamorphosis [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1285-1299.

[11] Dongfang Zhao, Haobo Zhang, Xinyang Zhang, Fengwei Jiang, Yijing Li, Wentong Cai, Ganwu Li.

The virulence regulator AbsR in avian pathogenic Escherichia coli has pleiotropic effects on bacterial physiology [J]. >Journal of Integrative Agriculture, 2024, 23(2): 649-668.

[12] Lan Huang, Qixin Guo, Yong Jiang, Zhixiu Wang, Guohong Chen, Guobin Chang, Hao Bai. Transcriptome analysis reveals the genetic basis of crest cushion formation in duck[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4172-4185.
[13] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[14] Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts [J]. >Journal of Integrative Agriculture, 2024, 23(1): 239-250.

[15] XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1412-1423.
No Suggested Reading articles found!