Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1412-1423    DOI: 10.1016/j.jia.2023.03.005
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis

XU Yi1, 2*#, HUANG Dong-mei1*, MA Fu-ning1, 2, YANG Liu3, WU Bin1, XING Wen-ting1, SUN Pei-guang1, 2, CHEN Di1, XU Bing-qiang1, SONG Shun1, 2#

1 National Key Laboratory for Tropical Crop Breeding/Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, P.R.China

2 Hainan Yazhou Bay Seed Laboratory, Sanya 572000, P.R.China

3 Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

西番莲(Passiflora edulis Sims)也称百香果,是西番莲科西番莲属的藤本植物。其全株提取的黄酮类和萜类对人体有良好的抗焦虑和抗炎作用,西番莲除了鲜食之外还可药用。在这项工作中,我们利用RNA-Seq分析了紫果品种的四个组织的转录表达,注释了大量基因功能。西番莲叶片中的黄酮类和萜类化合物主要是木犀草素、芹菜素、环状三萜皂苷和其他活性物质的衍生物。利用基于同源BLAST和系统发育分析,筛选了转录组数据中可能参与黄酮类和萜类合成途径的一系列候选单基因。结果显示,西番莲的三萜类化合物的生物合成来自甲羟戊酸(MVA)和2-C-甲基-D-赤藓糖醇-4-磷酸/1-脱氧-D-木糖醇-5-磷酸(MEP/DOXP)途径,这与其他果树通过MVA途径为主的生物合成不同。大多数候选基因在叶和/或花中高表达。8个关键基因的定量实时PCR(qRT-PCR)验证,证实了RNA-Seq数据的可靠性,并获得了其在西番莲属八个种(species)和其中一个种(栽培种)的四个组织中的表达规律。这些工作对分析关键基因在西番莲黄酮类化合物和萜类化合物的生物合成提供基础。



Abstract  

Passion fruit (Passiflora edulis Sims) is a vine of the Passiflora genus in the Passifloraceae family.  The extracted components include flavonoids and terpenoids, which have good anti-anxiety and anti-inflammatory effects in humans.  In this study, we analyzed the transcriptomes of four tissues of the ‘Zixiang’ cultivar using RNA-Seq, which provided a dataset for functional gene mining.  The de novo assembly of these reads generated 96 883 unigenes, among which 61 022 unigenes were annotated (62.99% yield).  In addition to its edible value, another important application of passion fruit is its medicinal value.  The flavonoids and terpenoids are mainly derivatives of luteolin, apigenin, cycloartane triterpenoid saponins and other active substances in leaf extracts.  A series of candidate unigenes in the transcriptome data that are potentially involved in the flavonoid and terpenoid synthesis pathways were screened using homology-based BLAST and phylogenetic analysis.  The results showed that the biosynthesis of triterpenoids in passion fruit comes from the branches of the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathways, which is different from the MVA pathway that is used in other fruit trees.  Most of the candidate genes were found to be highly expressed in the leaves and/or flowers.  Quantitative real-time PCR (qRT-PCR) verification was carried out and confirmed the reliability of the RNA-Seq data.  Further amplification and functional analysis of these putative unigenes will provide additional insight into the biosynthesis of flavonoids and terpenoids in passion fruit.

Keywords:  passion fruit       RNA-Seq        gene mining        flavonoids        terpenoids  
Received: 16 September 2022   Accepted: 09 January 2023
Fund: This work was supported by the National Natural Science Foundation of China (32260737), the Sanya Yazhou Bay Science and Technology City (SCKJ-JYRC-2022-84, SCKJ-JYRC-2022-93), and Natural Science Foundation of Hainan Province Hainan Provincial Natural Science Foundation of China (320QN305, 321MS091, 320RC686).
About author:  #Correspondence SONG Shun, E-mail: songs@catas.cn; XU Yi, E-mail: xuyi@catas.cn * These authors contributed equally to this study.

Cite this article: 

XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun. 2023. Identification of key genes involved in flavonoid and terpenoid biosynthesis and the pathway of triterpenoid biosynthesis in Passiflora edulis. Journal of Integrative Agriculture, 22(5): 1412-1423.

Abolghasemi R, Haghighi M, Etemadi N, Wang S, Soorni A. 2021. Transcriptome architecture reveals genetic networks of bolting regulation in Spinach. BMC Plant Biology, 21, 179.
Abourashed E A, Vanderplank J R, Khan I A. 2002. High-speed extraction and HPLC fingerprinting of medicinal plants - I.application to Passiflora flavonoids. Pharmaceutical Biology, 40, 81–91
Anvisa (Brazilian Health Regulatory Agency). 2010. Brazilian Pharmacopeia. 5th ed. Brasilia. (in Portuguese)
Augustin J M, Kuzina V, Andersen S B, Bak S. 2011. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72, 435–457. 
Bedell S, Wells J, Liu Q, Breivogel C. 2019. Vitexin as an active ingredient in passion flower with potential as an agent for nicotine cessation: Vitexin antagonism of the expression of nicotine locomotor sensitization in rats. Pharmaceutical Biology, 57, 8–12. 
Behera S, Voshall A, Moriyama E. 2021. Chapter 7 Plant Transcriptome Assembly: Review and Benchmarking. In: Helder I N, ed. Bioinformatics. Brisbane, Australia. pp. 109–130.
Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate - a new and powerful approach to multiple testing. Journal of the Royal Statistical Society (B), 57, 289-300.
Bombardelli E, Bonati A, Gabetta B, Martinelli E M, Mustich G, Danieli B. 1975. Passiflorine, a new glycoside from Passiflora edulis. Phytochemistry, 14, 2661–2665.
Calderon-Montano J M, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. 2011. A review on the dietary flavonoid kaempferol. Mini-Reviews in Medicinal Chemistry, 11, 298–344. 
Cauz-Santos L A, Munhoz C F, Rodde N, Cauet S, Santos A A, Penha H A, Dornelas M C, Varani A M, Oliveira G C, Berges H, Vieira M L. 2017. The chloroplast genome of Passiflora edulis (Passifloraceae) assembled from long sequence reads: Structural organization and phylogenomic studies in Malpighiales. Frontiers in Plant Science, 8, 334.
Chavarría-Perez L M, Giordani W, Dias K O G, Costa Z P, Ribeiro C A M, Benedetti A R, Cauz-Santos L A, Pereira G S, Rosa J R B F, Garcia A A F, Vieira M L C. 2020. Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype byenvironment interaction and selection of promising genotypes. PLoS ONE, 15, e0232818.
Coleta M, Batista M T, Campos M G, Carvalho R, Cotrim M D, Lima T C, Cunha A P. 2006. Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytotherapy Research, 20, 1067–1073. 
Costa J L, Jesus O N D, Oliveira G A F, Oliveira E J D. 2012. Effect of selection on genetic variability in yellow passion fruit. Crop Breeding and Applied Biotechnology, 12, 253–260. 
Deng J, Zhou Y, Bai M, Li H, Li L. 2010. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. Journal of Ethnopharmacology, 128, 148–153. 
Gadioli I L, da Cunha M S B, de Carvalho M V O, Costa A M, Pineli L L O. 2018. A systematic review on phenolic compounds in Passiflora plants: Exploring biodiversity for food, nutrition, and popular medicine. Critical Reviews in Food Science and Nutrition, 58, 785–807.  
Garcia-Ruiz A, Girones-Vilaplana A, Leon P, Moreno D A, Stinco C M, Melendez-Martinez A J, Ruales J. 2017. Banana passion fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, phytochemical composition and antioxidant capacity. Molecules, 22, 85. 
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
Guo L H, Ge D P, Ren Y, Dong J M, Zhao X Q, Liu X Q, Yuan Z H. 2022. The comparative analysis and identification of secondary metabolites between Tibet wild and cultivated pomegranates (Punica granatum L.) in China. Journal of Integrative Agriculture, 21, 736–750.
Hammerbacher A, Kandasamy D, Ullah C, Schmidt A, Wright L P, Gershenzon J. 2019. Flavanone-3-hydroxylase plays an important role in the biosynthesis of spruce phenolic defenses against bark beetles and their fungal associates. Frontiers in Plant Science, 10, 208.
He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, Wang M, Zuo M, Li Y. 2020. Passiflora edulis: An insight into current researches on phytochemistry and pharmacology. Frontiers in Pharmacology, 11, 617. 
Jiang H, Ma S, Li B. 2017. On measurement of vitamin C content in passion fruit. Journal of Guangxi Agriculture, 32, 25–27. (in Chinese) 
Johanny A, Iván L, Liceth C M, Elena M M, Nelsy L, Rocio C. 2019. Impact of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of bioactive compounds from Passion fruit (Passiflora edulis) leaves and juice extracts. Journal of Food Biochemistry, 43, e12879.
Li C, Xin M, Li L, He X, Liu G, Li J, Sheng J, Sun J. 2020. Transcriptome profiling helps to elucidate the mechanisms of ripening and epidermal senescence in passion fruit (Passiflora edulia Sims). PLoS ONE, 15, e0236535. 
Liu S, Li A, Chen C, Cai G, Zhang L, Guo C, Xu M. 2017. De novo transcriptome sequencing in Passiflora edulis Sims to identify genes and signaling pathways involved in cold tolerance. Forests, 8, 435. 
Ludwiczuk A, Skalicka-Woźniak K, Georgiev M I. 2017. Chapter 11 - terpenoids. In: Badal S, Delgoda R, eds., Pharmacognosy. Academic Press, Boston. pp. 233–266. 
Martin F W, Nakasone H Y. 1970. The edible species of Passiflora. Economic Botany, 24, 333–343. 
Munhoz C F, Costa Z P, Cauz-Santos L A, Reategui A C E, Rodde N, Cauet S, Dornelas M C, Leroy P, Varani A M, Berges H, Vieira M L C. 2018. A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species. Scientific Reports, 8, 13024. 
Ortiz D C, Bohórquez A, Duque M C, Tohme J, Cuéllar D, Mosquera Vásquez T. 2011. Evaluating purple passion fruit (Passiflora edulis Sims f. edulis) genetic variability in individuals from commercial plantations in Colombia. Genetic Resources and Crop Evolution, 59, 1089–1099. 
Ozarowski M, Piasecka A, Paszel-Jaworska A, Chaves D S D, Romaniuk A, Rybczynska M, Gryszczynska A, Sawikowska A, Kachlicki P, Mikolajczak P L, Seremak-Mrozikiewicz A, Klejewski A, Thiem B. 2018. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Brazilian Journal of Pharmacognosy, 28, 179–191.
Petry R D, Reginatto F, de-Paris F, Gosmann G, Salgueiro J B, Quevedo J, Kapczinski F, Ortega G G, Schenkel E P. 2001. Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phytotherapy Research, 15, 162–164
Qiu W, Su W, Cai Z, Dong L, Li C, Xin M, Fang W, Liu Y, Wang X, Huang Z, Ren H, Wu Z. 2020. Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis Sims. Journal of Agricultural and Food Chemistry, 68, 12096–12106. 
Reginatto F H, Carla K, Jan S, Dominique G, Grace G, Schenkel E P. 2001. Steroidal and triterpenoidal glucosides from Passiflora alata. Journal of the Brazilian Chemical Society, 12, 32–36. 
Rotta E M, Giroux H J, Lamothe S, Bélanger D, Sabik H, Visentainer J V, Britten M. 2020. Use of passion fruit seed extract (Passiflora edulis Sims) to prevent lipid oxidation in dairy beverages during storage and simulated digestion. LWT-Food Science and Technology, 123, 109088. 
Rotta E M, Rodrigues C A, Jardim I C S F, Maldaner L, Visentainer J V. 2019. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. LWT-Food Science and Technology, 100, 397–403. 
Santos A A, Penha H A, Bellec A, Munhoz Cde F, Pedrosa-Harand A, Berges H, Vieira M L. 2014. Begin at the beginning: A BAC-end view of the passion fruit (Passiflora) genome. BMC Genomics, 15, 816. 
Sena L M, Zucolotto S M, Reginatto F H, Schenkel E P, De Lima T C. 2009. Neuropharmacological activity of the pericarp of Passiflora edulis flavicarpa degener: Putative involvement of C-glycosylflavonoids. Experimental Biology and Medicine, 234, 967–975. 
da Silva Magedans Y V, Phillips M A, Fett-Neto A G. 2020. Production of plant bioactive triterpenoid saponins: from metabolites to genes and back. Phytochemistry Reviews, 20, 461–482.
Soares F A C , Martins M, Mathias L, Freitas M. 2005. Arbuscular mycorrhizal fungi and the occurrence of flavonoids in roots of passion fruit seedlings. Scientia Agricola, 62, 331–336
Song S, Zhang D H, Ma F N, Xing W T, Huang D M, Wu B, Chen J, Chen D, Xu B Q, X Y. 2022. Genome-wide identification and expression analyses of the aquaporin gene family in passion fruit (Passiflora edulis), revealing PeTIP3-2 to be involved in drought stress. International Journal of Molecular Sciences, 23, 5720.
Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A. 2014. Triterpene biosynthesis in plants. Annual Review of Plant Biology, 65, 225–257.
Tanabe E, Santos J, Pires K, Nova M, Borbely K, Xavier J, Santos F, Silva F, Barbosa J, Valentim I, Santos J, Goulart M, Borbely A. 2021. Beneficial in vitro effects of the passion fruit seed extract against placental Zika virus infection. Placenta, 112, 42.
Ulmer T, MacDougal J M. 2004. Passiflora: Passionflowers of the World. Workman Publishing Company, Portland.
Wang X Y, Tian L, Feng S J, Wei A Z. 2022. Identifying potential flavonoid biosynthesis regulator in Zanthoxylum bungeanum Maxim. by genome-wide characterization of the MYB transcription factor gene family. Journal of Integrative Agriculture, 21,1997–2018.
Wu Y, Tian Q, Huang W, Liu J, Xia X, Yang X, Mou H. 2020. Identification and evaluation of reference genes for quantitative real-time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports, 47, 2951–2962. 
Xiao X, Wang X Y, Gui X, Chen L, Huang B. 2016. Natural flavonoids as promising analgesic candidates: A systematic review. Chemistry and Biodiversity, 13, 1427–1440.
Xu F Q, Wang C, Yang L P, Luo H R, Fan W W, Zi C T, Dong F W, Hua J M, Zhou J. 2013. C-dideoxyhexosyl flavones from the stems and leaves of Passiflora edulis Sims. Food Chemistry, 136, 94–99.
Xu F Q, Wang N, Fan W W, Zi C T, Zhao H S, Hu J M, Zhou J. 2016. Protective effects of cycloartane triterpenoides from Passiflora edulis Sims against glutamate-induced neurotoxicity in PC12 cell. Fitoterapia, 115, 122–127. 
Xu M, Li A, Teng Y, Sun Z, Xu M. 2019. Exploring the adaptive mechanism of Passiflora edulis in karst areas via an integrative analysis of nutrient elements and transcriptional profiles. BMC Plant Biology, 19, 185. 
Yepes A, Ochoa-Bautista D, Murillo-Arango W, Quintero-Saumeth J, Bravo K, Osorio E. 2021. Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. Arabian Journal of Chemistry, 14, 102905.
Yoshikawa K, Katsuta S, Mizumori J, Arihara S. 2000a. Four cycloartane triterpenoids and six related saponins from Passiflora edulis. Journal of Natural Products, 63, 1229–1234. 
Yoshikawa K, Katsuta S, Mizumori J, Arihara S. 2000b. New cycloartane triterpenoids from Passiflora edulis. Journal Natural Products, 63, 1377–1380. 
Zheng X, Xu H, Ma X, Zhan R, Chen W. 2014. Triterpenoid saponin biosynthetic pathway profiling and candidate gene mining of the Ilex asprella root using RNA-Seq. International Journal of Molecular Sciences ,15, 5970–5987. 
Zucolotto S M, Goulart S, Montanher A B, Reginatto F H, Schenkel E P, Frode T S. 2009. Bioassay-guided isolation of anti-inflammatory C-glucosylflavones from Passiflora edulis. Planta Medica, 75, 1221–1226. 

No related articles found!
No Suggested Reading articles found!