Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 239-250    DOI: 10.1016/j.jia.2023.07.011
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts

Qing Liu1, Bingjin Mu1, Yijing Meng1, Linmei Yu1, Zirui Wang1, Tao Jia1, Wenbin Zheng1, Wenwei Gao1, Shichen Xie1, 2#, Xingquan Zhu1# 

1 Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China

2 Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

相关研究表明,N6-腺苷酸甲基化(N6-methyladenosine, m6A修饰在影响RNA命运方面发挥重要作用,并且与许多物种的细胞生长和发育过程密切相关,但目前尚无关于柔嫩艾美耳球虫m6A修饰的报道。为了解析mRNA上的m6A修饰在柔嫩艾美耳球虫生长发育过程中的作用,本研究分别利用m6A MeRIP测序、RNA测序4D-label free定量蛋白质组学技术,检测了柔嫩艾美耳球虫孢子卵囊和未孢子化卵囊mRNA上的m6A修饰情况差异mRNA差异蛋白,并进行了生物信息学分析m6A MeRIP测序结果表明,m6A修饰在CDS区中最丰富,其次是终止密码子。与未孢子卵囊相比,在孢子化卵囊检测到3903个高甲基化基因3178个低甲基化的基因对差异甲基化的基因和差异mRNA进行关联分析的结果表明,大多数基因的m6A修饰与mRNA丰度呈正相关。我们随机选取了4个基因进行荧光定量PCRm6A MeRIP-PCR验证,该结果和m6A MeRIP测序及RNA测序数据一致。GOKEGG注释分析显示这些差异甲基化且mRNA丰度存在差异的基因regulation of gene expressionepigeneticmicrotubuleautophagy-otherTOR signaling等相关。此外,我们将存在差异甲基化但mRNA丰度上没有差异的基因与蛋白组学数据进行关联分析,结果表明,一共有96个差异甲基化的基因mRNA丰度上没有差异但在蛋白丰度存在显著差异。GOKEGG注释分析显示96个基因可能参与虫体的细胞生物合成和代谢。我们首次绘制了柔嫩艾美耳球虫孢子化卵囊和未孢子卵囊转录组范围的m6A修饰图谱,通过与RNA测序数据和蛋白质组学数据的联合分析,揭示了m6A修饰在虫体发育过程中的潜在调控作用,并发现m6A修饰可能通过不依赖于mRNA水平的机制影响虫体发育过程中mRNA的翻译。



Abstract  

Evidence showed that N6-methyladenosine (m6A) modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.  However, no information regarding m6A modification in Eimeria tenella is currently available.  In the present study, we surveyed the transcriptome-wide prevalence of m6A in sporulated oocysts and unsporulated oocysts of Etenella.  Methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis showed that m6A modification was most abundant in the coding sequences, followed by stop codon.  There were 3,903 hypermethylated and 3,178 hypomethylated mRNAs in sporulated oocysts compared with unsporulated oocysts.  Further joint analysis suggested that m6A modification of the majority of genes was positively correlated with mRNA expression.  The mRNA relative expression and m6A level of the selected genes were confirmed by quantitative reverse transcription PCR (RT-qPCR) and MeRIP-qPCR.  GO and KEGG analysis indicated that differentially m6A methylated genes (DMMGs) with significant differences in mRNA expression were closely related to processes such as regulation of gene expression, epigenetic, microtubule, autophagy-other and TOR signaling.  Moreover, a total of 96 DMMGs without significant differences in mRNA expression showed significant differences at protein level.  GO and pathway enrichment analysis of the 96 genes showed that RNA methylation may be involved in cell biosynthesis and metabolism of Etenella.  We firstly present a map of RNA m6A modification in Etenella, which provides significant insights into developmental biology of E. tenella.

Keywords:  Eimeria tenella              m6A        RNA methylation        MeRIP-seq        RNA-seq        proteomic analysis   
Received: 27 March 2023   Online: 26 May 2023   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31902298), the Shanxi Provincial Key Research and Development Program, China (2022ZDYF126), the Fund for Shanxi “1331 Project”, China (20211331-13), the Science and Technology Innovation Program of Shanxi Agricultural University, China (2017YJ10), and the Special Research Fund of Shanxi Agricultural University for High-level Talents, China (2021XG001).

About author:  Qing Liu, E-mail: lqsxau@163.com; #Correspondence Shichen Xie, Tel: +86-354-6286886, E-mail: xieshichen221@163.com; Xingquan Zhu, Tel: +86-354-6286886, E-mail: xingquanzhu1@hotmail.com

Cite this article: 

Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu. 2024.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts . Journal of Integrative Agriculture, 23(1): 239-250.

Andrisani O, Liu Q, Kehn P, Leitner W W, Moon K, Vazquez-Maldonado N, Fingerman I, Gale Jr M. 2022. Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nature Immunology, 23, 354–357. 

Baumgarten S, Bryant J M, Sinha A, Reyser T, Preiser P R, Dedon P C, Scherf A. 2019. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nature Microbiology, 4, 2246–2259. 

Berlivet S, Scutenaire J, Deragon J M, Bousquet-Antonelli C. 2019. Readers of the m6A epitranscriptomic code. Biochimica et Biophysica Acta (Gene Regulatory Mechanisms), 1862, 329–342.

Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam M R, Lbik D, Mohamed B A, Renner A, von Lewinski D, Sacherer M, Bohnsack K E, Bohnsack M T, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K. 2020.  Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. European Journal of Heart Failure, 22, 54–66.

Blake D P, Knox J, Dehaeck B, Huntington B, Rathinam T, Ravipati V, Ayoade S, Gilbert W, Adebambo A O, Jatau I D, Raman M, Parker D, Rushton J, Tomley F M. 2020. Re-calculating the cost of coccidiosis in chickens. BMC Veterinary Research, 51, 115. 

Blake D P, Tomley F M. 2014. Securing poultry production from the ever-present Eimeria challenge. Trends in Parasitology, 30, 12–19. 

Dang Y, Dong Q, Wu B, Yang S, Sun J, Cui G, Xu W, Zhao M, Zhang Y, Li P, Li L. 2022. Global landscape of m6A methylation of differently expressed genes in muscle tissue of Liaoyu white cattle and simmental cattle. Frontiers in Cell and Developmental Biology, 10, 840513.

Deng X, Su R, Weng H, Huang H, Li Z, Chen J. 2018. RNA N6-methyladenosine modification in cancers: Current status and perspectives. Cell Research, 28, 507–517. 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206. 

Edupuganti R R, Geiger S, Lindeboom R G H, Shi H, Hsu P J, Lu Z, Wang S Y, Baltissen M P A, Jansen P W T C, Rossa M, Müller M, Stunnenberg H G, He C, Carell T, Vermeulen M. 2017. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural & Molecular Biology, 24, 870–878. 

Fang S, Peng B, Wen Y, Yang J, Wang H, Wang Z, Qian K, Wei Y, Jiao Y, Gao C, Dou L. 2022. Transcriptome-wide analysis of RNA N6-methyladenosine modification in adriamycin-resistant acute myeloid leukemia cells. Frontiers in Genetics, 13, 833694. 

Ferguson D J, Belli S I, Smith N C, Wallach M G. 2003. The development of the macrogamete and oocyst wall in Eimeria maxima: Immuno-light and electron microscopy. International Journal of Parasitology, 33, 1329–1340. 

Fetterer R H, Barfield R C. 2003. Characterization of a developmentally regulated oocyst protein from Eimeria tenella. Journal of Parasitology, 89, 553–564. 

He Y, Li L, Yao Y, Li Y, Zhang H, Fan M. 2021. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biology, 21, 516. 

Huang W, Kong F, Li R, Chen X, Wang K. 2022. Emerging roles of m6A RNA methylation regulators in gynecological cancer. Frontiers in Oncology, 12, 827956. 

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. 

Lal K, Bromley E, Oakes R, Prieto J H, Sanderson S J, Kurian D, Hunt L, Yates 3rd J R, Wastling J M, Sinden R E, Tomley F M. 2009. Proteomic comparison of four Eimeria tenella life-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics, 9, 4566–4576.

Li J, Pei Y, Zhou R, Tang Z, Yang Y. 2021. Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 17, 1682–1692. 

Li N, Guo Q, Zhang Q, Chen B J, Li X A, Zhou Y. 2022. Comprehensive analysis of differentially expressed profiles of mRNA N6-methyladenosine in colorectal cancer. Frontiers in Cell and Developmental Biology, 9, 760912. 

Ling Z, Chen L, Zhao J. 2020. m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma. Bioscience Reports, 40, BSR20200282. 

Liu L, Zeng S, Jiang H, Zhang Y, Guo X, Wang Y. 2019. Differential m6A methylomes between two major life stages allows potential regulations in Trypanosoma brucei. Biochemical and Biophysical Research Communications, 508, 1286–1290. 

Liu Q, Liu X, Zhao X, Zhu X Q, Suo X. 2023. Live attenuated anticoccidial vaccines for chickens. Trends in Parasitology, 39, 1087–1099.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. 

Ma X, Liu B, Gong Z, Qu Z, Cai J. 2021. Phosphoproteomic comparison of four Eimeria tenella life cycle stages. International Journal of Molecular Sciences, 22, 12110. 

Madlala T, Okpeku M, Adeleke M A. 2021. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: a review. Parasite, 28, 48. 

Morris G M, Gasser R B. 2006. Biotechnological advances in the diagnosis of avian coccidiosis and the analysis of genetic variation in Eimeria. Biotechnology Advances, 24, 590–603.

Qi N, Liao S, Abuzeid A M I, Li J, Wu C, Lv M, Lin X, Hu J, Yu L, Xiao W, Sun M, Li G. 2019. The effect of autophagy on the survival and invasive activity of Eimeria tenella sporozoites. Scientific Reports, 9, 5835. 

Qi S T, Ma J Y, Wang Z B, Guo L, Hou Y, Sun Q Y. 2016. N6-methyladenosine sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in xenopus laevis. Journal of Biological Chemistry, 291, 23020–23026.

Schellhaus A K, Moreno-Andrés D, Chugh M, Yokoyama H, Moschopoulou A, De S, Bono F, Hipp K, Schäffer E, Antonin W. 2017. Developmentally regulated GTP binding protein 1 (DRG1) controls microtubule dynamics. Scientific Reports, 7, 9996.

Schmatz D M, Crane M S, Murray P K.1984.Purification of Eimeria sporozoites by DE–52 anion exchange chromatography. Journal of Protozoology, 31, 181–183. 

Schwartz S, Agarwala S D, Mumbach M R, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen T S, Satija R, Ruvkun G, Carr S A, Lander E S, Fink G R, Regev A. 2013. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 155, 1409–1421. 

Shen L, Liang Z, Gu X, Chen Y, Teo Z W, Hou X, Cai W M, Dedon P C, Liu L, Yu H. 2016. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Developmental Cell, 38, 186–200. 

Shen L, Shao N Y, Liu X, Maze I, Feng J, Nestler E J. 2013. diffReps: Detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PLoS ONE, 8, e65598.

Sun A, Wang R, Yang S, Zhu X, Liu Y, Teng M, Zheng L, Luo J, Zhang G, Zhuang G. 2021. Comprehensive profiling analysis of the N6-methyladenosine-modified circular RNA transcriptome in cultured cells infected with Marek’s disease virus. Scientific Reports, 11, 11084.

Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. 2019. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells, 8, 1597. 

Westrip C A E, Zhuang Q, Hall C, Eaton C D, Coleman M L. 2021. Developmentally regulated GTPases: Structure, function and roles in disease. Cellular and Molecular Life Sciences, 78, 7219–7235. 

Yang X, Wang J, Ma X, Du J, Mei C, Zan L. 2021. Transcriptome-wide N6-methyladenosine methylome profiling reveals m6A regulation of skeletal myoblast differentiation in cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 9, 785380. 

Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137. 

Zhao N, Ming S, Sun L, Wang B, Li H, Zhang X, Zhao X. 2021. Identification and characterization of Eimeria tenella microneme protein (EtMIC8). Microbiology Spectrum, 9, e0022821.

Zhu X, Li S, Wang C, Yu Y, Wang J, He L, Siddiqui F A, Chen L, Zhu L, Zhou D, Qin J, Miao J, Cui L, Cao Y. 2022. The Plasmodium falciparum nuclear protein phosphatase NIF4 is required for efficient merozoite invasion and regulates artemisinin sensitivity. mBio, 13, e0189722.

[1] Xiaoxu Shen, Yongtong Tian, Wentao He, Can He, Shunshun Han, Yao Han, Lu Xia, Bo Tan, Menggen Ma, Houyang Kang, Jie Yu, Qing Zhu, Huadong Yin. Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-β signaling[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2764-2777.
[2] Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
[3] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[4] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[5] Jie Deng, Zi’e Wang, Wenyun Li, Xiaohua Chen, Diqiu Liu. WRKY11 up-regulated dirigent expression to enhance lignin/lignans accumulation in Lilium regale Wilson during response to Fusarium wilt[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2703-2722.
[6] Li Cui, Jianguo Wang, Zhaohui Tang, Zheng Zhang, Sha Yang, Feng Guo, Xinguo Li, Jingjing Meng, Jialei Zhang, Yakov Kuzyakov, Shubo Wan. General and specialized metabolites in peanut roots regulate arbuscular mycorrhizal symbiosis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2618-2632.
[7] Yao Zhang, Zelong She, Ruolan He, Shuangyan Yao, Xiang Li, Xiaoguang Liu, Xinming Yin, Jizhen Wei, Mengfang Du, Shiheng An. The Ca2+/CaN/ACC and cAMP/PKA/HK signal pathways are required for PBAN-mediated sex pheromone biosynthesis in Conogethes punctiferalis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2735-2751.
[8] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[9] Gensheng Zhang, Mudi Sun, Xinyao Ma, Wei Liu, Zhimin Du, Zhensheng Kang, Jie Zhao. Yr5-virulent races of Puccinia striiformis f. sp. tritici possess relative parasitic fitness higher than current main predominant races and potential risk[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2674-2685.
[10] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[11] Ming Ju, Guiting Li, Qiuzhen Tian, Hengchun Cao, Qin Ma, Yinghui Duan, Hui Guo, Zhanyou Zhang, Yingying Huang, Huili Wang, Haiyang Zhang, Hongmei Miao. Deletion of a 1,049 bp sequence from the 5´ UTR upstream of the SiHEC3 gene induces a seed non-shattering mutation in sesame  [J]. >Journal of Integrative Agriculture, 2024, 23(8): 2589-2604.
[12] Jia Chen, Xinran Zhang, Ziqi He, Dongwei Xiong, Miao Long. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2507-2524.
[13] Yuhan Zhao, Chen Qian, Yumei Zhang, Xiande Li, Kamiljon T. Akramov. Food security amid the COVID-19 pandemic in Central Asia: Evidence from rural Tajikistan[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2853-2867.
[14] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[15] Xin Zhang, Jingjing Wang, Fuli Tan, Haixiu Gao, Shenggen Fan. The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2842-2852.
No Suggested Reading articles found!