Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 239-250    DOI: 10.1016/j.jia.2023.07.011
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts

Qing Liu1, Bingjin Mu1, Yijing Meng1, Linmei Yu1, Zirui Wang1, Tao Jia1, Wenbin Zheng1, Wenwei Gao1, Shichen Xie1, 2#, Xingquan Zhu1# 

1 Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China

2 Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

相关研究表明,N6-腺苷酸甲基化(N6-methyladenosine, m6A修饰在影响RNA命运方面发挥重要作用,并且与许多物种的细胞生长和发育过程密切相关,但目前尚无关于柔嫩艾美耳球虫m6A修饰的报道。为了解析mRNA上的m6A修饰在柔嫩艾美耳球虫生长发育过程中的作用,本研究分别利用m6A MeRIP测序、RNA测序4D-label free定量蛋白质组学技术,检测了柔嫩艾美耳球虫孢子卵囊和未孢子化卵囊mRNA上的m6A修饰情况差异mRNA差异蛋白,并进行了生物信息学分析m6A MeRIP测序结果表明,m6A修饰在CDS区中最丰富,其次是终止密码子。与未孢子卵囊相比,在孢子化卵囊检测到3903个高甲基化基因3178个低甲基化的基因对差异甲基化的基因和差异mRNA进行关联分析的结果表明,大多数基因的m6A修饰与mRNA丰度呈正相关。我们随机选取了4个基因进行荧光定量PCRm6A MeRIP-PCR验证,该结果和m6A MeRIP测序及RNA测序数据一致。GOKEGG注释分析显示这些差异甲基化且mRNA丰度存在差异的基因regulation of gene expressionepigeneticmicrotubuleautophagy-otherTOR signaling等相关。此外,我们将存在差异甲基化但mRNA丰度上没有差异的基因与蛋白组学数据进行关联分析,结果表明,一共有96个差异甲基化的基因mRNA丰度上没有差异但在蛋白丰度存在显著差异。GOKEGG注释分析显示96个基因可能参与虫体的细胞生物合成和代谢。我们首次绘制了柔嫩艾美耳球虫孢子化卵囊和未孢子卵囊转录组范围的m6A修饰图谱,通过与RNA测序数据和蛋白质组学数据的联合分析,揭示了m6A修饰在虫体发育过程中的潜在调控作用,并发现m6A修饰可能通过不依赖于mRNA水平的机制影响虫体发育过程中mRNA的翻译。



Abstract  

Evidence showed that N6-methyladenosine (m6A) modification plays a pivotal role in influencing RNA fate and is strongly associated with cell growth and developmental processes in many species.  However, no information regarding m6A modification in Eimeria tenella is currently available.  In the present study, we surveyed the transcriptome-wide prevalence of m6A in sporulated oocysts and unsporulated oocysts of Etenella.  Methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis showed that m6A modification was most abundant in the coding sequences, followed by stop codon.  There were 3,903 hypermethylated and 3,178 hypomethylated mRNAs in sporulated oocysts compared with unsporulated oocysts.  Further joint analysis suggested that m6A modification of the majority of genes was positively correlated with mRNA expression.  The mRNA relative expression and m6A level of the selected genes were confirmed by quantitative reverse transcription PCR (RT-qPCR) and MeRIP-qPCR.  GO and KEGG analysis indicated that differentially m6A methylated genes (DMMGs) with significant differences in mRNA expression were closely related to processes such as regulation of gene expression, epigenetic, microtubule, autophagy-other and TOR signaling.  Moreover, a total of 96 DMMGs without significant differences in mRNA expression showed significant differences at protein level.  GO and pathway enrichment analysis of the 96 genes showed that RNA methylation may be involved in cell biosynthesis and metabolism of Etenella.  We firstly present a map of RNA m6A modification in Etenella, which provides significant insights into developmental biology of E. tenella.

Keywords:  Eimeria tenella              m6A        RNA methylation        MeRIP-seq        RNA-seq        proteomic analysis   
Received: 27 March 2023   Accepted: Online: 26 May 2023  
Fund: 

This work was supported by the National Natural Science Foundation of China (31902298), the Shanxi Provincial Key Research and Development Program, China (2022ZDYF126), the Fund for Shanxi “1331 Project”, China (20211331-13), the Science and Technology Innovation Program of Shanxi Agricultural University, China (2017YJ10), and the Special Research Fund of Shanxi Agricultural University for High-level Talents, China (2021XG001).

About author:  Qing Liu, E-mail: lqsxau@163.com; #Correspondence Shichen Xie, Tel: +86-354-6286886, E-mail: xieshichen221@163.com; Xingquan Zhu, Tel: +86-354-6286886, E-mail: xingquanzhu1@hotmail.com

Cite this article: 

Qing Liu, Bingjin M, Yijing Meng, Linmei Yu, Zirui Wang, Tao Jia, Wenbin Zheng, Wenwei Gao, Shichen Xie, Xingquan Zhu. 2024.

New insights into developmental biology of Eimeria tenella revealed by comparative analysis of mRNA N6-methyladenosine modification between unsporulated oocysts and sporulated oocysts . Journal of Integrative Agriculture, 23(1): 239-250.

Andrisani O, Liu Q, Kehn P, Leitner W W, Moon K, Vazquez-Maldonado N, Fingerman I, Gale Jr M. 2022. Biological functions of DEAD/DEAH-box RNA helicases in health and disease. Nature Immunology, 23, 354–357. 

Baumgarten S, Bryant J M, Sinha A, Reyser T, Preiser P R, Dedon P C, Scherf A. 2019. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nature Microbiology, 4, 2246–2259. 

Berlivet S, Scutenaire J, Deragon J M, Bousquet-Antonelli C. 2019. Readers of the m6A epitranscriptomic code. Biochimica et Biophysica Acta (Gene Regulatory Mechanisms), 1862, 329–342.

Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam M R, Lbik D, Mohamed B A, Renner A, von Lewinski D, Sacherer M, Bohnsack K E, Bohnsack M T, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K. 2020.  Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. European Journal of Heart Failure, 22, 54–66.

Blake D P, Knox J, Dehaeck B, Huntington B, Rathinam T, Ravipati V, Ayoade S, Gilbert W, Adebambo A O, Jatau I D, Raman M, Parker D, Rushton J, Tomley F M. 2020. Re-calculating the cost of coccidiosis in chickens. BMC Veterinary Research, 51, 115. 

Blake D P, Tomley F M. 2014. Securing poultry production from the ever-present Eimeria challenge. Trends in Parasitology, 30, 12–19. 

Dang Y, Dong Q, Wu B, Yang S, Sun J, Cui G, Xu W, Zhao M, Zhang Y, Li P, Li L. 2022. Global landscape of m6A methylation of differently expressed genes in muscle tissue of Liaoyu white cattle and simmental cattle. Frontiers in Cell and Developmental Biology, 10, 840513.

Deng X, Su R, Weng H, Huang H, Li Z, Chen J. 2018. RNA N6-methyladenosine modification in cancers: Current status and perspectives. Cell Research, 28, 507–517. 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206. 

Edupuganti R R, Geiger S, Lindeboom R G H, Shi H, Hsu P J, Lu Z, Wang S Y, Baltissen M P A, Jansen P W T C, Rossa M, Müller M, Stunnenberg H G, He C, Carell T, Vermeulen M. 2017. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nature Structural & Molecular Biology, 24, 870–878. 

Fang S, Peng B, Wen Y, Yang J, Wang H, Wang Z, Qian K, Wei Y, Jiao Y, Gao C, Dou L. 2022. Transcriptome-wide analysis of RNA N6-methyladenosine modification in adriamycin-resistant acute myeloid leukemia cells. Frontiers in Genetics, 13, 833694. 

Ferguson D J, Belli S I, Smith N C, Wallach M G. 2003. The development of the macrogamete and oocyst wall in Eimeria maxima: Immuno-light and electron microscopy. International Journal of Parasitology, 33, 1329–1340. 

Fetterer R H, Barfield R C. 2003. Characterization of a developmentally regulated oocyst protein from Eimeria tenella. Journal of Parasitology, 89, 553–564. 

He Y, Li L, Yao Y, Li Y, Zhang H, Fan M. 2021. Transcriptome-wide N6-methyladenosine (m6A) methylation in watermelon under CGMMV infection. BMC Plant Biology, 21, 516. 

Huang W, Kong F, Li R, Chen X, Wang K. 2022. Emerging roles of m6A RNA methylation regulators in gynecological cancer. Frontiers in Oncology, 12, 827956. 

Kim D, Langmead B, Salzberg S L. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12, 357–360. 

Lal K, Bromley E, Oakes R, Prieto J H, Sanderson S J, Kurian D, Hunt L, Yates 3rd J R, Wastling J M, Sinden R E, Tomley F M. 2009. Proteomic comparison of four Eimeria tenella life-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics, 9, 4566–4576.

Li J, Pei Y, Zhou R, Tang Z, Yang Y. 2021. Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 17, 1682–1692. 

Li N, Guo Q, Zhang Q, Chen B J, Li X A, Zhou Y. 2022. Comprehensive analysis of differentially expressed profiles of mRNA N6-methyladenosine in colorectal cancer. Frontiers in Cell and Developmental Biology, 9, 760912. 

Ling Z, Chen L, Zhao J. 2020. m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma. Bioscience Reports, 40, BSR20200282. 

Liu L, Zeng S, Jiang H, Zhang Y, Guo X, Wang Y. 2019. Differential m6A methylomes between two major life stages allows potential regulations in Trypanosoma brucei. Biochemical and Biophysical Research Communications, 508, 1286–1290. 

Liu Q, Liu X, Zhao X, Zhu X Q, Suo X. 2023. Live attenuated anticoccidial vaccines for chickens. Trends in Parasitology, 39, 1087–1099.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. 

Ma X, Liu B, Gong Z, Qu Z, Cai J. 2021. Phosphoproteomic comparison of four Eimeria tenella life cycle stages. International Journal of Molecular Sciences, 22, 12110. 

Madlala T, Okpeku M, Adeleke M A. 2021. Understanding the interactions between Eimeria infection and gut microbiota, towards the control of chicken coccidiosis: a review. Parasite, 28, 48. 

Morris G M, Gasser R B. 2006. Biotechnological advances in the diagnosis of avian coccidiosis and the analysis of genetic variation in Eimeria. Biotechnology Advances, 24, 590–603.

Qi N, Liao S, Abuzeid A M I, Li J, Wu C, Lv M, Lin X, Hu J, Yu L, Xiao W, Sun M, Li G. 2019. The effect of autophagy on the survival and invasive activity of Eimeria tenella sporozoites. Scientific Reports, 9, 5835. 

Qi S T, Ma J Y, Wang Z B, Guo L, Hou Y, Sun Q Y. 2016. N6-methyladenosine sequencing highlights the involvement of mRNA methylation in oocyte meiotic maturation and embryo development by regulating translation in xenopus laevis. Journal of Biological Chemistry, 291, 23020–23026.

Schellhaus A K, Moreno-Andrés D, Chugh M, Yokoyama H, Moschopoulou A, De S, Bono F, Hipp K, Schäffer E, Antonin W. 2017. Developmentally regulated GTP binding protein 1 (DRG1) controls microtubule dynamics. Scientific Reports, 7, 9996.

Schmatz D M, Crane M S, Murray P K.1984.Purification of Eimeria sporozoites by DE–52 anion exchange chromatography. Journal of Protozoology, 31, 181–183. 

Schwartz S, Agarwala S D, Mumbach M R, Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen T S, Satija R, Ruvkun G, Carr S A, Lander E S, Fink G R, Regev A. 2013. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell, 155, 1409–1421. 

Shen L, Liang Z, Gu X, Chen Y, Teo Z W, Hou X, Cai W M, Dedon P C, Liu L, Yu H. 2016. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Developmental Cell, 38, 186–200. 

Shen L, Shao N Y, Liu X, Maze I, Feng J, Nestler E J. 2013. diffReps: Detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PLoS ONE, 8, e65598.

Sun A, Wang R, Yang S, Zhu X, Liu Y, Teng M, Zheng L, Luo J, Zhang G, Zhuang G. 2021. Comprehensive profiling analysis of the N6-methyladenosine-modified circular RNA transcriptome in cultured cells infected with Marek’s disease virus. Scientific Reports, 11, 11084.

Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z. 2019. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells, 8, 1597. 

Westrip C A E, Zhuang Q, Hall C, Eaton C D, Coleman M L. 2021. Developmentally regulated GTPases: Structure, function and roles in disease. Cellular and Molecular Life Sciences, 78, 7219–7235. 

Yang X, Wang J, Ma X, Du J, Mei C, Zan L. 2021. Transcriptome-wide N6-methyladenosine methylome profiling reveals m6A regulation of skeletal myoblast differentiation in cattle (Bos taurus). Frontiers in Cell and Developmental Biology, 9, 785380. 

Zhang Y, Liu T, Meyer C A, Eeckhoute J, Johnson D S, Bernstein B E, Nusbaum C, Myers R M, Brown M, Li W, Liu X S. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9, R137. 

Zhao N, Ming S, Sun L, Wang B, Li H, Zhang X, Zhao X. 2021. Identification and characterization of Eimeria tenella microneme protein (EtMIC8). Microbiology Spectrum, 9, e0022821.

Zhu X, Li S, Wang C, Yu Y, Wang J, He L, Siddiqui F A, Chen L, Zhu L, Zhou D, Qin J, Miao J, Cui L, Cao Y. 2022. The Plasmodium falciparum nuclear protein phosphatase NIF4 is required for efficient merozoite invasion and regulates artemisinin sensitivity. mBio, 13, e0189722.

[1] Md. Zasim Uddin, Md. Nadim Mahamood, Ausrukona Ray, Md. Ileas Pramanik, Fady Alnajjar, Md Atiqur Rahman Ahad. E2ETCA: End-to-end training of CNN and attention ensembles for rice disease diagnosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 756-768.
[2] Jinbu Wang, Wencheng Zong, Liangyu Shi, Mianyan Li, Jia Li, Deming Ren, Fuping Zhao, Lixian Wang, Ligang Wang. Using mixed kernel support vector machine to improve the predictive accuracy of genome selection[J]. >Journal of Integrative Agriculture, 2026, 25(2): 775-787.
[3] Yaling Yu, Hongfan Ge, Hang Gao, Yanyan Zhang, Kangping Liu, Zhenlei Zhou. Changes of bone remodeling, cartilage damage and apoptosis-related pathways in broilers with femoral head necrosis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 788-802.
[4] Hui Song, Meiran Li, Zhenquan Duan. Current status of the genetic transformation of Arachis plants[J]. >Journal of Integrative Agriculture, 2026, 25(2): 577-584.
[5] Yue Song, Heng Wang, Mingyang Wang, Yumin Wang, Xiuxiang Lu, Wenjie Fan, Chen Yao, Pengxiang Liu, Yanjie Ma, Shengli Ming, Mengdi Wang, Lijun Shi. A novel TLR7 agonist exhibits antiviral activity against pseudorabies virus[J]. >Journal of Integrative Agriculture, 2026, 25(2): 803-813.
[6] Qiuling Huang, Yan Liao, Chunhui Huang, Huan Peng, Lingchiu Tsang, Borong Lin, Deliang Peng, Jinling Liao, Kan Zhuo. Integrative identification of Aphelenchoides fragariae (Nematoda: Aphelenchoididae) parasitizing Fuchsia hybrid in China[J]. >Journal of Integrative Agriculture, 2026, 25(2): 769-774.
[7] Jun Deng, Ke Liu, Xiangqian Feng, Jiayu Ye, Matthew Tom Harrison, Peter de Voil, Tajamul Hussain, Liying Huang, Xiaohai Tian, Meixue Zhou, Yunbo Zhang. Exploring strategies for agricultural sustainability in super hybrid rice using the food–carbon–nitrogen–water–energy–profit nexus framework[J]. >Journal of Integrative Agriculture, 2026, 25(2): 624-638.
[8] Xijun Wang, Hong Huo, Lei Shuai, Jinying Ge, Liyan Peng, Jinming Wang, Shuang Xiao, Weiye Chen, Zhiyuan Wen, Jinliang Wang, Zhigao Bu. Evaluation of safety and immunogenicity of a genetically modified rabies virus for use as an oral vaccine in several non-target species[J]. >Journal of Integrative Agriculture, 2026, 25(2): 814-819.
[9] Jing Gao, Shenglan Li, Yi Lei, Qi Wang, Zili Ning, Zhaohong Lu, Xianming Tan, Mei Xu, Feng Yang, Wenyu Yang. Delayed photosynthesis response causes carbon assimilation reduction in soybean under fluctuating light[J]. >Journal of Integrative Agriculture, 2026, 25(2): 648-658.
[10] Lihong Ma, Pengtao Wang, QianHao Zhu, Xinqi Cheng, Tao Zhang, Xinyu Zhang, Huaguo Zhu, Zuoren Yang, Jie Sun, Feng Liu. Unbalanced lipid metabolism in anther, especially the disorder of the alpha-linolenic acid metabolism pathway, leads to cotton male sterility[J]. >Journal of Integrative Agriculture, 2026, 25(2): 610-623.
[11] Teng Li, Shumei Wang, Qing Liu, Xuepeng Zhang, Lin Chen, Yuanquan Chen, Wangsheng Gao, Peng Sui. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress[J]. >Journal of Integrative Agriculture, 2026, 25(2): 639-647.
[12] Xiqiang Li, Yuhong Gao, Zhengjun Cui, Tingfeng Zhang, Shiyuan Chen, Shilei Xiang, Lingling Jia, Bin Yan, Yifan Wang, Lizhuo Guo, Bing Wu . Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis[J]. >Journal of Integrative Agriculture, 2026, 25(2): 659-670.
[13] Xin Wan, Dangjun Wang, Junya Li, Shuaiwen Zhang, Linyang Li, Minghui He, Zhiguo Li, Hao Jiang, Peng Chen, Yi Liu. Land use type shapes carbon pathways in Tibetan alpine ecosystems: Characterization of 13C abundance in aggregates and density fractions[J]. >Journal of Integrative Agriculture, 2026, 25(2): 448-459.
[14] Liyan Wang, Buqing Wang, Zhengmiao Deng, Yonghong Xie, Tao Wang, Feng Li, Shao’an Wu, Cong Hu, Xu Li, Zhiyong Hou, Jing Zeng Ye’ai Zou, Zelin Liu, Changhui Peng, Andrew Macrae. Surface soil organic carbon losses in Dongting Lake floodplain as evidenced by field observations from 2013 to 2022[J]. >Journal of Integrative Agriculture, 2026, 25(2): 436-447.
[15] Xi Chen, Khalid Ayesha, Xue Wen, Yanan Zhang, Mengru Dou, Kexuan Jia, Yong Wang, Yuling Li, Feng Sun, Guotian Liu, Yan Xu. An integrate methods to improve the high efficiency of embryo rescue breeding in seedless grapes[J]. >Journal of Integrative Agriculture, 2026, 25(2): 721-733.
No Suggested Reading articles found!