Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3328-3342    DOI: 10.1016/j.jia.2023.07.022
Section 1: Cotton functional genomics Advanced Online Publication | Current Issue | Archive | Adv Search |
Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae
Nurimanguli Aini1, Yuanlong Wu1, Zhenyuan Pan1, Yizan Ma2, Qiushuang An1, Guangling Shui1, Panxia Shao1, Dingyi Yang2, Hairong Lin1, Binghui Tang3, Xin Wei4, Chunyuan You2, 3, Longfu Zhu2#, Dawei Zhang4#, Zhongxu Lin2#, Xinhui Nie1#
1 Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group/Agricultural College, Shihezi University, Shihezi 832003, China
2 National Key Laboratory of Crop Genetic Improvement/College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
3 Cotton Research Institute, Shihezi Academy of Agricultural Science, Shihezi 832011, China
4 Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

棉花黄萎病使棉花生产受到重大损失。为了揭示棉花响应黄萎病的防御机制,本研究利用棉花品M138抗黄萎病P2感黄萎病进行了转录组分析。结果显示,M138P2中分别有11076个和6640个差异表达基因响应黄萎病的侵染。利用加权基因共表达网络分析方法4633差异表达转录因子进行共表达分析发现,一个与黄萎病菌的抗性反应密切相关的“MEblue”模块,该模块包含654个转录因子。在这些差异表达转录因子中,发现了参与黄萎病防御反应的关键基因乙烯转录因子GhERF91。进一步,通过病毒诱导的基因沉默实验和外源乙烯利处理分析发现,GhERF91受乙烯诱导表达,并正调控棉花对黄萎病菌响应。本研究提供了棉花响应黄萎病侵染的转录组数据,同时鉴定了与黄萎病抗性相关的关键基因GhERF91,为选育抗黄萎病的棉花品种提供了的遗传资源。



Abstract  
Verticillium dahliae causes significant losses in cotton production.  To reveal the mechanism of the defense response to V. dahliae in cotton, transcriptomic analyses were performed using cotton cultivars M138 (V. dahliae-resistant) and P2 (V. dahliae-susceptible).  The results revealed 11,076 and 6,640 differentially expressed genes (DEGs) in response to V. dahliae, respectively.  The weighted gene co-expression network analysis of 4,633 transcription factors (TFs) indicated a “MEblue” module containing 654 TFs that strongly correlate with resistance to V. dahliae.  Among these TFs, the ethylene response factor Ghi_A05G10166 (GhERF91) was identified as a putative hub gene with a defense response against V. dahliae.  A virus-induced gene silencing assay and exogenous application of ethephon showed that GhERF91 is activated by ethylene and positively regulates the response to V. dahliae exposure in cotton.  This study provides fundamental transcriptome data and a putative causal gene (GhERF91) associated with resistance to V. dahliae, as well as genetic resources for breeding V. dahliae-resistant cotton.


Keywords:  cotton        Verticillium wilt        RNA-sequencing        GhERF91        virus-induced gene silencing  
Received: 10 April 2023   Accepted: 03 July 2023
Fund: 
This work was supported by the fund for National Key Research and Development Program of China (2023YFD2301203-05), the BTNYGG, China (NYHXGG, 2023AA102) and the Key Programs for Science and Technology Development of Shihezi City, Xinjiang Production and Construction Corps, China (2022NY01).
About author:  #Correspondence Longfu Zhu, Tel: +86-27-87283955, E-mail: lfzhu@mail.hzau.edu.cn; Dawei Zhang, Tel: +86-571-63370369, E-mail: zbzdw012@126.com; Zhongxu Lin, E-mail: linzhongxu@mail.hzau.edu.cn; Xinhui Nie, Tel: +86-993-2058970, E-mail: xjnxh2004130@126.com

Cite this article: 

Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. 2024. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae. Journal of Integrative Agriculture, 23(10): 3328-3342.

An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant Journal101, 573–589.

Arlotta C, Puglia G D, Genovese C, Toscano V, Karlova R, Beekwilder J, De Vos R C H, Raccuia S A. 2020. MYB5-like and bHLH influence flavonoid composition in pomegranate. Plant Science298, 110563.

Berrocal-Lobo M, Molina A, Solano R. 2002. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. The Plant Journal29, 23–32.

Cai Y F, He X H, Mo J C, Sun Q, Yang J P, Liu J G. 2009. Molecular research and genetic engineering of resistance to Verticillium wilt in cotton: A review. African Journal of Biotechnology8, 7363–7372.

Chen W Q, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G Z, Whitham S A, Budworth P R, Tao Y, Xie Z Y, Chen X, Lam S, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B, Heinlein M, et al. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell14, 559–574.

Cheng M C, Liao P M, Kuo W W, Lin T P. 2013. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology162, 1566–1582.

Deokar A A, Kondawar V, Kohli D, Aslam M, Jain P K, Karuppayil S M, VarshneyR K, Srinivasan R. 2015. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Functional & Integrative Genomics15, 27–46.

Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, Bodt S D, Bossche R V, Milde L D, Yoshizumi T, Inzé M. 2013. ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology162, 319–332.

Fischer U, Droge-Laser W. 2004. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to Tobacco mosaic virus. Molecular Plant-Microbe Interactions17, 1162–1171.

Fradin E F, Thomma B. 2010. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. alboatrumMolecular Plant Pathology7, 71–86.

Galindo-Gonzalezi L, Deyholos M K. 2016. RNA-seq transcriptome response of flax (Linum usitatissimum L.) to the pathogenic fungus Fusarium oxysporum f. sp liniFrontiers in Plant Science7, 1766.

Gao W, Long L, Zhu L F, Xu L, Gao W H, Sun L Q, Liu L L, Zhang X L. 2013. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliaeMolecular & Cellular Proteomics12, 3690–3703.

Guo W F, Jin L, Miao Y H, He X, Hu Q, Guo K, Zhu L F, Zhang X L. 2016. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant Molecular Biology91, 305–318.

Hou Y J, Yu X Y, Chen W P, Wang S H, Cao L F, Geng X Y, Sun C, Qu. S C. 2021a. Transcriptome sequencing, data-based screening, and functional investigation of MdWRKY75d and MdWRKY75e in disease-resistant apples. Journal of Plant Interactions16, 462–473.

Hou Y J, Yu X Y, Chen W P, Zhuang W B, Wang S H, Sun C, Cao L F, Zhou T T, Qu S C. 2021b. MdWRKY75e enhances resistance to Alternaria alternata in Malus domesticaHorticulture Research8, 225.

Huang G, Wu Z G, Percy R G, Bai M Z, Li Y, Frelichowski J E, Hu J, Wang K, Yu J Z, Zhu Y X. 2020. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nature Genetics52, 516–524.

Jiang J J, Ma S H, Ye H, Jiang M, Cao J S, Zhang J H. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology59, 86–101.

Kang C Y, Darwish O, Geretz A, Shahan R, Alkharouf N, Liu Z C. 2013. Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vescaPlant Cell25, 1960–1978.

Lai Y, Dang F F, Lin J, Yu L, Shi Y L, Xiao Y H, Huang M K, Lin J H, Chen C C, Qi A H, Liu Z Q, Guan D Y, Mou S L, Qiu A L, He S L. 2013. Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiology and Biochemistry62, 70–78.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Li X, Kong X Q, Zhou J Y, Luo Z, Lu H Q, Li W J, Tang W, Zhang D M, Ma C L, Zhang H, Dong H Z. 2021. Seeding depth and seeding rate regulate apical hook formation by inducing GhHLS1 expression via ethylene during cotton emergence. Plant Physiology and Biochemistry164, 92–100.

Liang H X, Liu Y, Liu H X, Wang F D, Xin Z Y, Zhang Z Y. 2008. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. Journal of Experimental Botany59, 3111–3120.

Licausi F, Giorgi F M, Zenoni S, Osti F, Pezzotti M, Perata P. 2010. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis viniferaBMC Genomics11, 719.

Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs. New Phytologist199, 639–649.

Liu J G, Wang Y Q, Zhao G Y, Zhao J L, Du H Y, He X L, Zhang H S. 2017. A novel Gossypium barbadense ERF transcription factor, GbERFb, regulation host response and resistance to Verticillium dahliae in tobacco. Physiology and Molecular Biology of Plants23, 125–134.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell15, 165–178.

Ma Z M, Wu T, Huang K, Jin Y M, Li Z, Chen M J, Yun S, Zhang H J, Yang X, Chen H Y, Bai H J, Du L, Ju S S, Guo L P, Bian M D, Hu L J, Du X L, Jiang W Z. 2020. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice. Frontiers in Plant Science11, 709.

Meng X P, Li F G, Liu C L, Zhang C J, Wu Z X, Chen Y J. 2010. Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.). Plant Molecular Biology Reporter28, 176–183.

Moffat C S, Ingle R A, Wathugala D L, Saunders N J, Heather K, Knight M R, Wu K. 2012. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in ArabidopsisPLoS ONE7, e35995.

Otasek D, Morris J H, Boucas J, Pico A R, Demchak B. 2019. Cytoscape automation: Empowering workflow-based network analysis. Genome Biology20, 185.

Pantelides I S, Tjamos S E, Paplomatas E J. 2010. Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliaeMolecular Plant Pathology11, 191–202.

Qiao Z X, Huang B, Liu J H. 2008. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum). Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms1779, 122–127.

Quan R D, Hu S J, Zhang Z L, Zhang H W, Zhang Z J, Huang R F. 2010. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal8, 476–488.

Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical & Biophysical Research Communications290, 998–1009.

Son G H, Wan J R, Kim J, Nguyen X C, Chung W S, Hong J C, Stacey G. 2012. Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Molecular Plant-Microbe Interactions25, 48–60.

Song R R, Li J P, Xie C J, Jian W, Yang X Y. 2020. An Overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliaeInternational Journal of Molecular Sciences21, 1120.

Song C P, Agarwal M, Ohta M, Guo Y, Halfter U, Zhu W. 2005. Role of an arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell17, 2384–2396.

Tian X M, Han P, Wang J, Shao P X, An Q S, Aini N, Yang Q Y, You C Y, Lin H R, Zhu L F, Pan Z Y, Nie X. 2022. Association mapping of lignin response to Verticillium wilt through eight-way MAGIC population in upland cotton. Journal of Integrative Agriculture22, 1324–1337.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols7, 562–578.

Tu L L, Zhang X L, Liu D Q, Jin S X, Cao J L, Zhu F, Deng F L, Tan J F, Zhang C B. 2007. Suitable internal control genes for qRT-PCR normalization in cotton fiber development and somatic embryogenesis. Chinese Science Bulletin52, 3110–3117.

Wang F X, Ma Y P, Yang C L, Zhao P M, Yao Y, Jian G L, Luo Y M, Xia G X. 2011. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliaeProteomics11, 4296–4309.

Xiao S H, Hu Q, Zhang X J, Si H, Liu S M, Chen L, Chen K S, Berne S, Yuan D J, Lindsey K, Zhang X L, Zhu L F. 2021. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. Journal of Experimental Botany72, 4721–4743.

Xie Z L, Nolan T M, Jiang H, Yin Y H. 2019. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in ArabidopsisFrontiers in Plant Science10, 228.

Xiong X P, Sun S C, Li Y J, Zhang X Y, Sun J, Xue F. 2019. The cotton WRKY transcription factor GhWRKY70 negatively regulates the defense response against Verticillium dahliaeCrop Journal7, 393–402.

Xiong X P, Sun S C, Zhang X Y, Li Y J, Liu F, Zhu Q H, Xue F, Sun J. 2020. GhWRKY70D13 regulates resistance to Verticillium dahliae in cotton through the ethylene and jasmonic acid signaling pathways. Frontiers in Plant Science11, 69.

Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. 2018. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. Plant Biotechnology Journal16, 1629–1643.

Yang C L, Liang S, Wang H Y, Han L B, Wang F X, Cheng H Q, Wu X M, Qu Z L, Wu J H, Xia G X. 2015. Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against Verticillium dahliaeMolecular Plant, 8, 399–411.

Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. 2005. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology58, 585–596.

Yang Z R, Qanmber G, Wang Z, Yang Z E, Li F G. 2020. Gossypium genomics: Trends, scope, and utilization for cotton improvement. Trends in Plant Science25, 488–500.

Yu G C, Wang L G, Han Y Y, He Q Y. 2012. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology16, 284–287.

Zhao L, Chang X, Qi D Y, Dong L D, Wang G J, Fan S J, Jiang L Y, Cheng Q, Chen X, Han D, Xu P F, Zhang S Z. 2017. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Frontiers in Plant Science8, 299.

Zhou B, Zhang L, Ullah A, Jin X, Yang X Y, Zhang X L 2016. Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS ONE11, e0152927.

Zhu Z G, Shi J L, Xu W R, Li H E, He M Y, Xu Y, Xu T F, Yang Y Z, Cao J L, Wang Y J. 2013. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology170, 923–933.

[1] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[2] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[3] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[4] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[5] Zhili Chong, Yunxiao Wei, Kaili Li, Muhammad Aneeq Ur Rahman, Chengzhen Liang, Zhigang Meng, Yuan Wang, Sandui Guo, Liangrong He, Rui Zhang. GbLMI1 over-expression improves cotton aboveground vegetative growth[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3457-3467.
[6] QI Hai-kun, DU Ming-wei, MENG Lu, XIE Liu-wei, A. Egrinya ENEJI, XU Dong-yong, TIAN Xiao-li, LI Zhao-hu. Cotton maturity and responses to harvest aids following chemical topping with mepiquat chloride during bloom period[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2577-2587.
[7] WANG Le, LIU Yang, WEN Ming, LI Ming-hua, DONG Zhi-qiang, CUI Jing, MA Fu-yu. Growth and yield responses to simulated hail damage in drip-irrigated cotton[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2241-2252.
[8] NIU Er-li, CAI Cai-ping, BAO Jiang-hao, WU Shuang, ZHAO Liang, GUO Wang-zhen. Up-regulation of a homeodomain-leucine zipper gene HD-1 contributes to trichome initiation and development in cotton[J]. >Journal of Integrative Agriculture, 2019, 18(2): 361-371.
No Suggested Reading articles found!