Alizadeh M R, Adamowski J, Nikoo M R, AghaKouchak A, Dennison P, Sadegh M. 2020. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Science Advances, 6, eaaz4571.
Anandhi A. 2016. Growing degree days–Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecological Indicators, 61, 149–158.
Asseng S, Ewert F, Martre P, Roetter R P, Lobell D B, Cammarano D, Kimball B A, Ottman M J, Wall G W, White J W, Reynolds M P, Alderman P D, Prasad P V V, Aggarwal P K, Anothai J, Basso B, Biernath C, Challinor A J, De Sanctis G, Doltra J, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147.
Beillouin D, Schauberger, B, Bastos A, Ciais P, Makowski D. 2020. Impact of extreme weather conditions on European crop production in 2018. Philosophical Transactions of the Royal Society B-biological Sciences, 375, 20190510.
Boogaard H, Schubert J, De Wit A, Lazebnik J, Hutjes R, Van der Grijn G. 2020. Agrometeorological indicators from 1979 to present derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Earth Observation and Environmental Informatics PE&RC, Wageningen University .
Brás T.A. Seixas J, Carvalhais N, Jägermeyr J. 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16, 065012.
Butler E E, Mueller N D, Huybers P. 2018. Peculiarly pleasant weather for US maize. Proceedings of the National Academy of Sciences of the United States of America, 115, 11935–11940.
Cameron A C, Gelbach J B, Miller D L. 2011. Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29, 238–249.
Chakrabarti S, Bongiovanni T, Judge J, Zotarelli L, Bayer C. 2014. Assimilation of SMOS soil moisture for quantifying drought impacts on crop yield in agricultural regions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3867–3879.
Diffenbaugh N S, Singh D, Mankin J S, Horton D E, Swain D L, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881–4886.
Dupont F M, Hurkman, W J, Vensel W H, Tanaka C, Kothari K M, Chung O K. Altenbach S B. 2006. Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. European Journal of Agronomy, 25, 96–107.
Feng S, Hao Z, Zhang X, Hao F. 2019. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Science of the Total Environment, 689, 1228–1234.
Franke J A, Müller C, Minoli S, Elliott J, Folberth C, Gardner C, Hank T, Izaurralde R C, Jägermeyr J, Jones C D, Liu W, Olin S, Pugh T A M, Ruane A C, Stephens H, Zabel F, Moyer E J, 2022. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 28, 167–181.
Gerber J S, Ray D K, Makowski D, Butler E E, Mueller N D, West P C, Johnson J A, Polasky S, Samberg L H, Siebert S, Sloat L. 2024. Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nature Food, 5, 125–135.
Gourdji S M, Sibley A M, Lobell D B. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 8, 024041.
He Y, Hu X, Xu W, Fang J, Shi P. 2022. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Science of the Total Environment, 824, 153885.
Heinicke S, Frieler K A, Jagermeyr J, Mengel M. 2022. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environmental Research Letters, 17, 044026.
Heino M, Kinnunen P, Anderson W, Ray D K, Puma M J, Varis O, Siebert S, Kummu M. 2023. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 13, 3583.
Iizumi T, Sakai T. 2020. The global dataset of historical yields for major crops 1981-2016. Scientific Data, 7, 1–7.
Ji H, Xiao L, Xia Y, Song H, Liu B, Tang L, Cao W, Zhu Y, Liu L. 2017. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 243, 33–42.
Jiao D, Xu N, Yang F, Xu K. 2021. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11, 17956.
Kang Y, Khan S, Ma X. 2009. Climate change impacts on crop yield, crop water productivity and food security-A review. Progress in Natural Science, 19, 1665–1674.
Kassem Y, Gokcekus H, Alijl N. 2023. Gridded precipitation datasets and gauge precipitation products for driving hydrological models in the dead sea region, Jordan. Sustainability, 15, 11965.
Leng G, Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821.
Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne S I, Horton R. 2021. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2, 683-691.
Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.
Li Y, Guan K, Schnitkey G D, DeLucia E, Peng B. 2019. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global change biology, 25, 2325–2337.
Lin M, Huybers P. 2012. Reckoning wheat yield trends. Environmental Research Letters, 7, 024016.
Liu Y, Dai L. 2020. Modelling the impacts of climate change and crop management measures on soybean phenology in China. Journal of Cleaner Production, 262, 121271.
Lobell D B. 2014. Climate change adaptation in crop production: Beware of illusions. Global Food Security, 3, 72–76.
Lobell D B, Burke M B. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150, 1443–1452.
Luan X, Vico G, 2021. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation–a modeling analysis. Hydrology and Earth System Sciences, 25, 1411–1423.
Luo N, Mueller N, Zhang Y, Feng P, Huang S, Liu D L, Yu Y, Wang X, Wang P, Meng Q. 2023. Short-term extreme heat at flowering amplifies the impacts of climate change on maize production. Environmental Research Letters, 18, 084021.
Luo Q. 2011. Temperature thresholds and crop production: a review. Climatic Change, 109, 583–598.
Matiu M, Ankerst D, Menzel A. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS ONE, 12, e0178339
Molotoks A, Smith P, Dawson T P. 2021. Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10, e261.
Mourtzinis S, Specht J E, Lindsey L E, Wiebold W J, Ross J, Nafziger E D, Kandel H J, Mueller N, Devillez P L, Arriaga F J. 2015. Climate-induced reduction in US-wide soybean yields underpinned by region-and in-season-specific responses. Nature Plants, 1, 1–4.
Munoz-Sabater J, Dutra E, Agusti-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles D G, Piles M, Rodriguez-Fernandez N J, Zsoter E, Buontempo C, Thepaut J N. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349–4383.
Prado K, Maurel C. 2013. Regulation of leaf hydraulics: from molecular to whole plant levels. Frontiers in Plant Science, 4, 255.
Ray D K, Gerber J S, MacDonald G K, West P C. 2015. Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989.
Ray D K, Ramankutty N, Mueller N D, West P C, Foley J A. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications, 3, 1293.
Rezaei E E, Webber H, Asseng S, Boote K, Durand J L, Ewert F, Martre P, MacCarthy D S. 2023. Climate change impacts on crop yields. Nature Reviews Earth & Environment, 4, 831–846.
Richter G M, Semenov M A. 2005. Modelling impacts of climate change on wheat yields in England and Wales: Assessing drought risks. Agricultural Systems, 84, 77–97.
Ridder N N, Pitman A J, Westra S, Ukkola A, Do H X, Bador M, Hirsch A L, Evans J P, Di Luca A, Zscheischler J. 2020. Global hotspots for the occurrence of compound events. Nature Communications, 11, 5956.
Zhu L, Chiarelli D D, Sangiorgio M, Beltran-Peña A A, Rulli M C, D’Odorico P, Fung I. 2020. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 117, 29526–29534.
Rötter R P, Appiah M, Fichtler E, Kersebaum K C, Trnka M, Hoffmann M P. 2018. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 221, 142–156.
Sacks W J, Deryng D, Foley J A, Ramankutty N. 2010. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography, 19, 607–620.
Sarhadi A, Ausín M C, Wiper M P, Touma D, Diffenbaugh N S. 2018. Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Science Advance, 4, eaau3487.
Schauberger B, Gornott C, Wechsung F. 2017. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting. Global Change Biology, 23, 4750–4764.
Schubert S, Suarez M, Pegion P, Koster R, Bacmeister J. 2004. On the cause of the 1930s Dust Bowl. Science, 303, 1855–1859.
Siebert S, Webber H, Zhao G, Ewert F. 2017. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environmental Research Letters, 12, 054023.
Singh B K, Delgado-Baquerizo M, Egidi E, Guirado E, Leach J E, Liu H, Trivedi P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21, 640–656.
Tack J, Barkley A, Nalley L L. 2015. Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the United States of America, 112, 6931–6936.
Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.
van der Veer S, Hamed R, Karabiyik H, Roskam J L. 2024. Mitigating the effects of extreme weather on crop yields: insights from farm management strategies in the Netherlands. Environmental Research Letters, 19, 104042.
Vogel E, Donat M G, Alexander L V, Meinshausen M, Ray D K, Karoly D, Meinshausen N, Frieler K. 2019. The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14, 054010.
Wang X, Li X, Zhong Y, Blennow A, Liang K, Liu F. 2022. Effects of elevated CO2 on grain yield and quality in five wheat cultivars. Journal of Agronomy Crop Science, 208, 733–745.
Webber H, Ewert F, Olesen J E, Mueller C, Fronzek S, Ruane A C, Bourgault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor N. 2018. Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9, 4249.
Wheeler T, von Braun J. 2013. Climate change impacts on global food security. Science, 341, 508–513.
Wood L A. 1970. The use of dew-point temperature in humidity calculations. Journal of Research of the National Bureau of Standards, 74, 117–22.
Wu Y, Liu B, Gong Z, Hu X, Ma J, Ren D, Liu H, Ni Y. 2022. Predicting yield loss in winter wheat due to frost damage during stem elongation in the central area of Huang-huai plain in China. Field Crops Research, 276, 108399.
Xin Y, Lu N, Jiang H, Liu Y, Yao L. 2021. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay Area, China. Journal of Hydrology, 602, 126791.
Xu X, Frey S K, Boluwade A, Erler A R, Khader O, Lapen D R, Sudicky E. 2019. Evaluation of variability among different precipitation products in the Northern Great Plains. Journal of Hydrology: Regional Studies, 24, 100608.
Zabel F, Müller C, Elliott J, Minoli S, Jägermeyr J, Schneider J M, Franke J A, Moyer E, Dury M, Francois L, Folberth C, Liu W, Pugh T A M, Olin S, Rabin S S, Mauser W, Hank T, Ruane A C, Asseng S. 2021. Large potential for crop production adaptation depends on available future varieties. Global Change Biology, 27, 3870–3882.
Zampieri M, Ceglar A, Dentener F, Toreti A. 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12, 064008.
Zandalinas S I, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologic Plantarum, 162, 2–12.
Zhao H, Zhang L, Kirkham M B, Welch S M, Nielsen-Gammon J W, Bai G, Luo J, Andresen D A, Rice C W, Wan N, Lollato R P, Zheng D, Gowda P H, Lin X. 2022. US winter wheat yield loss attributed to compound hot-dry-windy events. Nature Communications, 13, 7233.
Zhao Y, Xiao L, Tang Y, Yao X, Cheng T, Zhu Y, Cao W, Tian Y. 2024. Spatio-temporal change of wheat yield and its quantitative responses to compound drought-frost events–An example of the Huang-Huai-Hai Plain of China from 2001 to 2020. Science of The Total Environment, 940, 173531.
Zhu P, Burney J. 2021. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Global Change Biology, 27, 550–562.
Zhu P, Burney J, Chang J, Jin Z, Mueller N D, Xin Q, Xu J, Yu L, Makowski D, Ciais P. 2022. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nature Climate Change, 12, 1016-1023.
|