Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Quantifying the contribution of triple compound extreme events to global yield loss of major staple crops from 1982 to 2016

Kun Xiao1, Ying Sun1, Wei Wu2, Xuewen Zhou1, Zhicheng Zhang1, Qiuyao Lai1, Chen Huang1, Zhenhua Xiong1, Qinchuan Xin1, 3#

1 Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-Sen University, Guangzhou 510275, China

2 Mining College, Guizhou University, Guiyang 550025, China

3 School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China

 Highlights 

l Assessed global crop yield responses to individual and compound extremes using a linear mixed-effects model from 1982 to 2016.

l Compound events (HWLP, HDW) caused significantly greater yield losses than individual extremes, especially during critical crop growth stages.

l Identified crop- and stage-specific vulnerabilities to compound extremes, emphasizing their role in global food security risk assessments.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在持续气候变化背景下,复合极端事件发生频率日益增加,已对全球粮食安全构成严重威胁。与单一极端事件相比,多个极端事件的同时发生会加剧农作物产量的下降,然而,针对这类复合影响的系统评估仍相对有限。为弥补这一研究空白,本研究采用线性混合效应模型,定量评估了1982年至2016年间,单一极端事件(寒冷日(CD)和致死温度日数(KDD))以及三种复合极端事件(热浪与降水(HWLP)和高温干燥大风(HDW))对全球冬小麦、大豆和玉米产量的影响。结果表明,在受极端事件严重影响的地区(超过95%分位阈值),CDKDDHWLPHDW分别导致农作物总产量损失超过9.16%24.89%26.69%7.12%。复合极端事件的不利影响在作物关键生育期尤为显著。HWLP在抽穗至收获期每暴露10小时可导致冬小麦和玉米产量分别下降9.4%6.8%,而在播种至三叶期可使大豆产量下降8.8%。同样,KDD在抽穗至收获期每增加10°C·日可使冬小麦产量下降7.4%,在播种至拔节期可使玉米产量下降9.5%,在播种至三叶期可使大豆产量下降3.8%。研究结果强调了复合极端事件在决定全球主要粮食作物产量中的重要作用,这一因素在现有的风险评估中往往被忽视。



Abstract  

The increasing frequency of compound extreme events under ongoing climate change threatens global food security. Compared to individual extreme events, the simultaneous occurrence of multiple extreme events can exacerbate crop yield reductions, yet comprehensive assessments of these compound effects remain limited. To bridge this gap, we applied a linear mixed-effects model to quantify the impacts of individual extreme events (cold days (CD) and killing degree days (KDD)) and triple compound extreme events (heatwave and low precipitation (HWLP) and hot-dry-windy (HDW)) on the global yields of winter wheat, soybeans, and maize from 1982 to 2016. Our analysis indicated that regions severely impacted by extreme events (exceeding the 95% threshold) experienced total crop yield losses of more than 9.16, 24.89, 26.69, and 7.12% due to CD, KDD, HWLP, and HDW, respectively. The adverse effects of compound events were particularly pronounced during critical growth stages. HWLP results in yield losses of 9.4% for winter wheat and 6.8% for maize per 10 hours of exposure during the heading to harvesting stages, while soybean yields declined by 8.8% per 10 hours during the planting to three-true-leaf stage. Similarly, KDD caused a 7.4% yield reduction in winter wheat per 10°C day during the heading to harvesting stages, a 9.5% reduction in maize per 10°C day during the planting to jointing stages, and a 3.8% reduction in soybean per 10°C day during the planting to three-true-leaf stages. These findings underscore the substantial contribution of compound extreme events, which are often overlooked in existing risk assessments, in determining the global yields of major staple crops.

Keywords:  food security       crop yield loss       compound extreme events       climate change  
Online: 01 May 2025  
Fund: 

This research is supported by the National Natural Science Foundation of China (42371483, and 42401573), the Guangdong Basic and Applied Basic Research Foundation, China (2022B1515130001), the Natural Science Foundation of Guangdong Province, China (2024A1515012081 and 2025A1515010770), the Guangzhou Basic and Applied Basic Research Project, China (202201011666), and the Postdoctoral Fellowship Program of China postdoctoral science foundation (CPSF) (GZB20240880).

About author:  Kun Xiao, E-mail: xiaok6@mail2.sysu.edu.cn; #Correspondence Qinchuan Xin, E-mail: xinqinchuan@mail.sysu.edu.cn

Cite this article: 

Kun Xiao, Ying Sun, Wei Wu, Xuewen Zhou, Zhicheng Zhang, Qiuyao Lai, Chen Huang, Zhenhua Xiong, Qinchuan Xin. 2025. Quantifying the contribution of triple compound extreme events to global yield loss of major staple crops from 1982 to 2016. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.04.038

Alizadeh M R, Adamowski J, Nikoo M R, AghaKouchak A, Dennison P, Sadegh M. 2020. A century of observations reveals increasing likelihood of continental-scale compound dry-hot extremes. Science Advances, 6, eaaz4571.

Anandhi A. 2016. Growing degree days–Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecological Indicators, 61, 149–158.

Asseng S, Ewert F, Martre P, Roetter R P, Lobell D B, Cammarano D, Kimball B A, Ottman M J, Wall G W, White J W, Reynolds M P, Alderman P D, Prasad P V V, Aggarwal P K, Anothai J, Basso B, Biernath C, Challinor A J, De Sanctis G, Doltra J, et al. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147.

Beillouin D, Schauberger, B, Bastos A, Ciais P, Makowski D. 2020. Impact of extreme weather conditions on European crop production in 2018. Philosophical Transactions of the Royal Society B-biological Sciences, 375, 20190510.

Boogaard H, Schubert J, De Wit A, Lazebnik J, Hutjes R, Van der Grijn G. 2020. Agrometeorological indicators from 1979 to present derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), Earth Observation and Environmental Informatics PE&RC, Wageningen University .

Brás T.A. Seixas J, Carvalhais N, Jägermeyr J. 2021. Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16, 065012.

Butler E E, Mueller N D, Huybers P. 2018. Peculiarly pleasant weather for US maize. Proceedings of the National Academy of Sciences of the United States of America, 115, 11935–11940.

Cameron A C, Gelbach J B, Miller D L. 2011. Robust inference with multiway clustering. Journal of Business & Economic Statistics, 29, 238–249.

Chakrabarti S, Bongiovanni T, Judge J, Zotarelli L, Bayer C. 2014. Assimilation of SMOS soil moisture for quantifying drought impacts on crop yield in agricultural regions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 3867–3879.

Diffenbaugh N S, Singh D, Mankin J S, Horton D E, Swain D L, Touma D, Charland A, Liu Y, Haugen M, Tsiang M, Rajaratnam B. 2017. Quantifying the influence of global warming on unprecedented extreme climate events. Proceedings of the National Academy of Sciences of the United States of America, 114, 4881–4886.

Dupont F M, Hurkman, W J, Vensel W H, Tanaka C, Kothari K M, Chung O K. Altenbach S B. 2006. Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. European Journal of Agronomy, 25, 96–107.

Feng S, Hao Z, Zhang X, Hao F. 2019. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Science of the Total Environment, 689, 1228–1234.

Franke J A, Müller C, Minoli S, Elliott J, Folberth C, Gardner C, Hank T, Izaurralde R C, Jägermeyr J, Jones C D, Liu W, Olin S, Pugh T A M, Ruane A C, Stephens H, Zabel F, Moyer E J, 2022. Agricultural breadbaskets shift poleward given adaptive farmer behavior under climate change. Global Change Biology, 28, 167–181.

Gerber J S, Ray D K, Makowski D, Butler E E, Mueller N D, West P C, Johnson J A, Polasky S, Samberg L H, Siebert S, Sloat L. 2024. Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nature Food, 5, 125–135.

Gourdji S M, Sibley A M, Lobell D B. 2013. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environmental Research Letters, 8, 024041.

He Y, Hu X, Xu W, Fang J, Shi P. 2022. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Science of the Total Environment, 824, 153885.

Heinicke S, Frieler K A, Jagermeyr J, Mengel M. 2022. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environmental Research Letters, 17, 044026.

Heino M, Kinnunen P, Anderson W, Ray D K, Puma M J, Varis O, Siebert S, Kummu M. 2023. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 13, 3583.

Iizumi T, Sakai T. 2020. The global dataset of historical yields for major crops 1981-2016. Scientific Data, 7, 1–7.

Ji H, Xiao L, Xia Y, Song H, Liu B, Tang L, Cao W, Zhu Y, Liu L. 2017. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 243, 33–42.

Jiao D, Xu N, Yang F, Xu K. 2021. Evaluation of spatial-temporal variation performance of ERA5 precipitation data in China. Scientific Reports, 11, 17956.

Kang Y, Khan S, Ma X. 2009. Climate change impacts on crop yield, crop water productivity and food security-A review. Progress in Natural Science, 19, 1665–1674.

Kassem Y, Gokcekus H, Alijl N. 2023. Gridded precipitation datasets and gauge precipitation products for driving hydrological models in the dead sea region, Jordan. Sustainability, 15, 11965.

Leng G, Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811–821.

Lesk C, Coffel E, Winter J, Ray D, Zscheischler J, Seneviratne S I, Horton R. 2021. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2, 683-691.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature, 529, 84–87.

Li Y, Guan K, Schnitkey G D, DeLucia E, Peng B. 2019. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global change biology, 25, 2325–2337.

Lin M, Huybers P. 2012. Reckoning wheat yield trends. Environmental Research Letters, 7, 024016.

Liu Y, Dai L. 2020. Modelling the impacts of climate change and crop management measures on soybean phenology in China. Journal of Cleaner Production, 262, 121271.

Lobell D B. 2014. Climate change adaptation in crop production: Beware of illusions. Global Food Security, 3, 72–76.

Lobell D B, Burke M B. 2010. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150, 1443–1452.

Luan X, Vico G, 2021. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation–a modeling analysis. Hydrology and Earth System Sciences, 25, 1411–1423.

Luo N, Mueller N, Zhang Y, Feng P, Huang S, Liu D L, Yu Y, Wang X, Wang P, Meng Q. 2023. Short-term extreme heat at flowering amplifies the impacts of climate change on maize production. Environmental Research Letters, 18, 084021.

Luo Q. 2011. Temperature thresholds and crop production: a review. Climatic Change, 109, 583–598.

Matiu M, Ankerst D, Menzel A. 2017. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS ONE, 12, e0178339

Molotoks A, Smith P, Dawson T P. 2021. Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10, e261.

Mourtzinis S, Specht J E, Lindsey L E, Wiebold W J, Ross J, Nafziger E D, Kandel H J, Mueller N, Devillez P L, Arriaga F J. 2015. Climate-induced reduction in US-wide soybean yields underpinned by region-and in-season-specific responses. Nature Plants, 1, 1–4.

Munoz-Sabater J, Dutra E, Agusti-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles D G, Piles M, Rodriguez-Fernandez N J, Zsoter E, Buontempo C, Thepaut J N. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13, 4349–4383.

Prado K, Maurel C. 2013. Regulation of leaf hydraulics: from molecular to whole plant levels. Frontiers in Plant Science, 4, 255.

Ray D K, Gerber J S, MacDonald G K, West P C. 2015. Climate variation explains a third of global crop yield variability. Nature Communications, 6, 5989.

Ray D K, Ramankutty N, Mueller N D, West P C, Foley J A. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications, 3, 1293.

Rezaei E E, Webber H, Asseng S, Boote K, Durand J L, Ewert F, Martre P, MacCarthy D S. 2023. Climate change impacts on crop yields. Nature Reviews Earth & Environment, 4, 831–846.

Richter G M, Semenov M A. 2005. Modelling impacts of climate change on wheat yields in England and Wales: Assessing drought risks. Agricultural Systems, 84, 77–97.

Ridder N N, Pitman A J, Westra S, Ukkola A, Do H X, Bador M, Hirsch A L, Evans J P, Di Luca A, Zscheischler J. 2020. Global hotspots for the occurrence of compound events. Nature Communications, 11, 5956.

Zhu L, Chiarelli D D, Sangiorgio M, Beltran-Peña A A, Rulli M C, D’Odorico P, Fung I. 2020. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proceedings of the National Academy of Sciences of the United States of America, 117, 29526–29534.

Rötter R P, Appiah M, Fichtler E, Kersebaum K C, Trnka M, Hoffmann M P. 2018. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—A review. Field Crops Research, 221, 142–156.

Sacks W J, Deryng D, Foley J A, Ramankutty N. 2010. Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography, 19, 607–620.

Sarhadi A, Ausín M C, Wiper M P, Touma D, Diffenbaugh N S. 2018. Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Science Advance, 4, eaau3487.

Schauberger B, Gornott C, Wechsung F. 2017. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting. Global Change Biology, 23, 4750–4764.

Schubert S, Suarez M, Pegion P, Koster R, Bacmeister J. 2004. On the cause of the 1930s Dust Bowl. Science, 303, 1855–1859.

Siebert S, Webber H, Zhao G, Ewert F. 2017. Heat stress is overestimated in climate impact studies for irrigated agriculture. Environmental Research Letters, 12, 054023.

Singh B K, Delgado-Baquerizo M, Egidi E, Guirado E, Leach J E, Liu H, Trivedi P. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21, 640–656.

Tack J, Barkley A, Nalley L L. 2015. Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences of the United States of America, 112, 6931–6936.

Tilman D, Balzer C, Hill J, Befort B L. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264.

van der Veer S, Hamed R, Karabiyik H, Roskam J L. 2024. Mitigating the effects of extreme weather on crop yields: insights from farm management strategies in the Netherlands. Environmental Research Letters, 19, 104042.

Vogel E, Donat M G, Alexander L V, Meinshausen M, Ray D K, Karoly D, Meinshausen N, Frieler K. 2019. The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14, 054010.

Wang X, Li X, Zhong Y, Blennow A, Liang K, Liu F. 2022. Effects of elevated CO2 on grain yield and quality in five wheat cultivars. Journal of Agronomy Crop Science, 208, 733–745.

Webber H, Ewert F, Olesen J E, Mueller C, Fronzek S, Ruane A C, Bourgault M, Martre P, Ababaei B, Bindi M, Ferrise R, Finger R, Fodor N. 2018. Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9, 4249.

Wheeler T, von Braun J. 2013. Climate change impacts on global food security. Science, 341, 508–513.

Wood L A. 1970. The use of dew-point temperature in humidity calculations. Journal of Research of the National Bureau of Standards, 74, 117–22.

Wu Y, Liu B, Gong Z, Hu X, Ma J, Ren D, Liu H, Ni Y. 2022. Predicting yield loss in winter wheat due to frost damage during stem elongation in the central area of Huang-huai plain in China. Field Crops Research, 276, 108399.

Xin Y, Lu N, Jiang H, Liu Y, Yao L. 2021. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay Area, China. Journal of Hydrology, 602, 126791.

Xu X, Frey S K, Boluwade A, Erler A R, Khader O, Lapen D R, Sudicky E. 2019. Evaluation of variability among different precipitation products in the Northern Great Plains. Journal of Hydrology: Regional Studies, 24, 100608.

Zabel F, Müller C, Elliott J, Minoli S, Jägermeyr J, Schneider J M, Franke J A, Moyer E, Dury M, Francois L, Folberth C, Liu W, Pugh T A M, Olin S, Rabin S S, Mauser W, Hank T, Ruane A C, Asseng S. 2021. Large potential for crop production adaptation depends on available future varieties. Global Change Biology, 27, 3870–3882.

Zampieri M, Ceglar A, Dentener F, Toreti A. 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters, 12, 064008.

Zandalinas S I, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologic Plantarum, 162, 2–12.

Zhao H, Zhang L, Kirkham M B, Welch S M, Nielsen-Gammon J W, Bai G, Luo J, Andresen D A, Rice C W, Wan N, Lollato R P, Zheng D, Gowda P H, Lin X. 2022. US winter wheat yield loss attributed to compound hot-dry-windy events. Nature Communications, 13, 7233.

Zhao Y, Xiao L, Tang Y, Yao X, Cheng T, Zhu Y, Cao W, Tian Y. 2024. Spatio-temporal change of wheat yield and its quantitative responses to compound drought-frost events–An example of the Huang-Huai-Hai Plain of China from 2001 to 2020. Science of The Total Environment, 940, 173531.

Zhu P, Burney J. 2021. Temperature‐driven harvest decisions amplify US winter wheat loss under climate warming. Global Change Biology, 27, 550–562.

Zhu P, Burney J, Chang J, Jin Z, Mueller N D, Xin Q, Xu J, Yu L, Makowski D, Ciais P. 2022. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nature Climate Change, 12, 1016-1023. 

[1] Shakoor Abdul, Zaib Gul, Ming Xu. Tracing the contribution of cattle farms to methane emissions through bibliometric analyses[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1220-1233.
[2] Gang Fu, Guangyu Zhang, Huakun Zhou. Effects of long-term experimental warming on phyllosphere epiphytic bacterial and fungal communities of four alpine plants[J]. >Journal of Integrative Agriculture, 2025, 24(3): 799-814.
[3] Ruowei Li, Jian Sun, Guodong Han, Zixuan Qi, Yunhui Li, Junhe Chen, Wen He, Mengqi Zhang, Chaowei Han, Jieji Duo. Ecological risks linked with ecosystem services in the upper reach of the Yellow River under global changes[J]. >Journal of Integrative Agriculture, 2025, 24(3): 966-983.
[4] Qing Liang, Xujing Yang, Yuheng Huang, Zhenwei Yang, Meichen Feng, Mingxing Qing, Chao Wang, Wude Yang, Zhigang Wang, Meijun Zhang, Lujie Xiao, Xiaoyan Song. Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2941-2954.
[5] Yuhan Zhao, Chen Qian, Yumei Zhang, Xiande Li, Kamiljon T. Akramov. Food security amid the COVID-19 pandemic in Central Asia: Evidence from rural Tajikistan[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2853-2867.
[6] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[7] Zongyi Wu, Xiaolong Feng, Yumei Zhang, Shenggen Fan.

Repositioning fertilizer manufacturing subsidies for improving food security and reducing greenhouse gas emissions in China [J]. >Journal of Integrative Agriculture, 2024, 23(2): 430-443.

[8] Zeli Li, Fuli Fang, Liang Wu, Feng Gao, Mingyang Li, Benhang Li, Kaidi Wu, Xiaomin Hu, Shuo Wang, Zhanbo Wei , Qi Chen, Min Zhang, Zhiguang Liu. The microbial community, nutrient supply and crop yields differ along a potassium fertilizer gradient under wheat–maize double-cropping systems[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3592-3609.
[9] Shuai Hao, Guogang Wang, Yantao Yang, Sicheng Zhao, Shengnan Huang, Liping Liu, Huanhuan Zhang. Promoting grain production through high-standard farmland construction: Evidence in China[J]. >Journal of Integrative Agriculture, 2024, 23(1): 324-335.
[10] Jie Xue, Xianglin Zhang, Songchao Chen, Bifeng Hu, Nan Wang, Zhou Shi.

Quantifying the agreement and accuracy characteristics of four satellite-based LULC products for cropland classification in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 283-297.

[11] ZHAO Hao-xiang, XIAN Xiao-qing, GUO Jian-yang, YANG Nian-wan, ZHANG Yan-ping, CHEN Bao-xiong, HUANG Hong-kun, LIU Wan-xue. Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change [J]. >Journal of Integrative Agriculture, 2023, 22(9): 2783-2795.
[12] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[13] FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li. Response of dryland crops to climate change and drought-resistant and water-suitable planting technology: A case of spring maize[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2067-2079.
[14] PAN Song, PENG De-liang, LI Ying-mei, CHEN Zhi-jie, ZHAI Ying-yan, LIU Chen, HONG Bo. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2138-2150.
[15] NIU Kunyu, GUO Hui, LIU Jing. Can food security and low carbon be achieved simultaneously? —An empirical analysis of the mechanisms influencing the carbon footprint of potato and corn cultivation in irrigation areas[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1230-1243.
No Suggested Reading articles found!