Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (3): 799-814    DOI: 10.1016/j.jia.2024.06.008
Section 1: Dynamics of grassland ecosystems Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of long-term experimental warming on phyllosphere epiphytic bacterial and fungal communities of four alpine plants
Gang Fu1# , Guangyu Zhang1, Huakun Zhou2#
1 Lhasa Plateau Ecosystem Research Station/Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 
2 Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
 Highlights 
●   Long-term warming effects on phyllosphere microbes vary with host species. 
●   Different host species have different phyllosphere microbes. 
●   Warming may cause adverse effects of phyllosphere microbes on plant. 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

气候变暖将如何影响叶际微生物群落仍存在不确定性。本研究探讨了长期(>10)实验增温对藏北黑褐苔草、小嵩草、二裂委陵菜和丝颖针茅的叶际附生细菌和真菌群落的影响。总体而言,增温增加了宿主植物叶际附生细菌α-多样性,但降低了叶际附生真菌α-多样性。增温改变了宿主植物叶际附生细菌和真菌的群落组成,主要表现为放线菌门、厚壁菌门和致病-腐生真菌丰度的增加,而担子菌门和共生真菌丰度的减少。增温增加了漂移和其他过程对细菌群落组装的影响,而降低了扩散限制过程对细菌群落组装的影响和均质化选择过程对真菌群落组装的影响。叶际微生物群落的变化可能与增温引起的温度、叶片形态结构和生理、叶际微生物群落组装的生态过程、以及叶际微生物物种共现网络拓扑结构的变化有关。增温改变了细菌物种共现网络,主要表现为顶点、聚类系数和异质性的增加,以及平均路径长度和网络直径。增温主要是通过增加网络直径并减少顶点影响真菌物种共现网络。增温对叶际附生微生物群落的影响随着宿主植物的变化而变化,这可能与不同植物的株高、叶片丙二醛、叶际微生物群落组装生态过程和物种共现网络拓扑参数对增温的响应不同有关。因此,气候变暖会改变高寒植物的叶际附生细菌和真菌群落,这种变化因宿主植物而异。气候变暖引起的叶际附生微生物群落的变化可能对宿主植物产生不利影响。



Abstract  

The effects of climatic warming on phyllosphere microbial communities remain uncertain.  In this study, the effects of long-term (>10 years) experimental warming on phyllosphere epiphytic bacterial and fungal communities of Carex alrofusca, Kobresia pygmaea, Potentilla bifurca and Stipa capillacea were examined in the northern Tibet.  Overall, warming increased bacterial α-diversity, but reduced fungal α-diversity across the four host plants.  Warming altered the bacterial and fungal community compositions mainly by increasing Actinobacteria, Firmicutes and pathotroph-saprotroph fungi, and reducing Basidiomycota and symbiotroph fungi across the four host plants.  Warming increased the relative effect of the ‘drift & others’ process in the bacterial community, but reduced the relative effect of the ‘dispersal limitation’ process in the bacterial community and the relative effect of the ‘homogeneous selection’ process in the fungal community across the four host plants.  The overall warming effects on the bacterial and fungal communities may be due to overall warming effects on temperature, leaf morphology structure and physicochemical properties, ecological processes of community assembly and topological parameters of species co-occurrence networks of bacteria and fungi.  Warming altered the bacterial species co-occurrence network mainly by increasing the vertex, clustering coefficient and heterogeneity, while reducing the average path length and network diameter across host species.  Warming altered the fungal species co-occurrence network mainly by increasing the network diameter and reducing the vertex across host species.  Warming effects on bacterial and fungal communities varied among host plants, which may be due to the diverse responses to warming of plant height, leaf malondialdehyde, ecological processes of community assembly and topological parameters of species co-occurrence network.  Therefore, warming can alter phyllosphere epiphytic bacterial and fungal communities of alpine plants.  Such changes varied among host plants and may cause adverse effects on the host plants.

Keywords:  biodiversity        phyllosphere microbes        epiphytic microbes        climate change        alpine regions        host plants  
Received: 04 February 2024   Accepted: 06 May 2024
Fund: 
This research was funded by the Pilot Project of Chinese Academy of Sciences (XDA26050501), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2020054), the National Natural Science Foundation of China (31600432), the Lhasa Science and Technology Plan Project, China (LSKJ202422), the Tibet Autonomous Region Science and Technology Project, China (XZ202401JD0029), and the Construction of Zhongba County Fixed Observation and Experiment Station of First Support System for Agriculture Green Development, China.
About author:  #Correspondence Gang Fu, Mobile: +86-13401139763, E-mail: fugang@igsnrr.ac.cn; Huakun Zhou, Mobile: +86-13997389912, E-mail: hkzhou@nwipb.cas.cn

Cite this article: 

Gang Fu, Guangyu Zhang, Huakun Zhou. 2025. Effects of long-term experimental warming on phyllosphere epiphytic bacterial and fungal communities of four alpine plants. Journal of Integrative Agriculture, 24(3): 799-814.

Aydogan E L, Budich O, Hardt M, Choi Y H, Jansen-Willems A B, Moser G, Mueller C, Kaempfer P, Glaeser S P. 2020. Global warming shifts the composition of the abundant bacterial phyllosphere microbiota as indicated by a cultivation-dependent and -independent study of the grassland phyllosphere of a long-term warming field experiment. FEMS Microbiology Ecology96, fiaa087.

Aydogan E L, Moser G, Mueller C, Kampfer P, Glaeser S P. 2018. Long-term warming shifts the composition of bacterial communities in the phyllosphere of Galium album in a permanent grassland field-experiment. Frontiers in Microbiology9, 144.

Balint M, Bartha L, O’Hara R B, Olson M S, Otte J, Pfenninger M, Robertson A L, Tiffin P, Schmitt I. 2015. Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology24, 235–248.

Barberan A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal6, 343–351.

Bell J K, Mamet S D, Helgason B, Siciliano S D. 2022. Brassica napus bacterial assembly processes vary with plant compartment and growth stage but not between lines. Applied and Environmental Microbiology88, e0027322.

Breiman L. 2001. Random forests. Machine Learning45, 5–32.

Carrell A A, Kolton M, Glass J B, Pelletier D A, Warren M J, Kostka J E, Iversen C M, Hanson P J, Weston D J. 2019. Experimental warming alters the community composition, diversity, and N2 fixation activity of peat moss (Sphagnum fallax) microbiomes. Global Change Biology25, 2993–3004.

Copeland J K, Yuan L, Layeghifard M, Wang P W, Guttman D S. 2015. Seasonal community succession of the phyllosphere microbiome. Molecular Plant–Microbe Interactions28, 274–285.

Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau M L, Vacher C. 2012. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytologist196, 510–519.

De Costa D M, Rathnayake R, De Costa W, Kumari W M D, Dissanayake D M N. 2006. Variation of phyllosphere microflora of different rice varieties in Sri Lanka and its relationship to leaf anatomical and physiological characters. Journal of Agronomy and Crop Science192, 209–220.

Faticov M, Abdelfattah A, Roslin T, Vacher C, Hamback P, Blanchet F G, Lindahl B D, Tack A J M. 2021. Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. New Phytologist231, 1770–1783.

Fu G, Shen Z X. 2016. Response of alpine plants to nitrogen addition on the Tibetan Plateau: A meta-analysis. Journal of Plant Growth Regulation35, 974–979.

Fu G, Shen Z X. 2017. Effects of enhanced UV-B radiation on plant physiology and growth on the Tibetan Plateau: A meta-analysis. Acta Physiologiae Plantarum39, 85.

Fu G, Shen Z X, Sun W, Zhong Z M, Zhang X Z, Zhou Y T. 2015. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. Journal of Plant Growth Regulation 34, 57–65.

Fu G, Shen Z X, Zhang X Z. 2018. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agricultural and Forest Meteorology249, 11–21.

Guimera R, Amaral L A N. 2005. Functional cartography of complex metabolic networks. Nature433, 895–900.

Han F, Yu C, Fu G. 2023a. Non-growing/growing season non-uniform-warming increases precipitation use efficiency but reduces its temporal stability in an alpine meadow. Frontiers in Plant Science14, 1090204.

Han F, Yu C, Fu G. 2023b. Temperature sensitivities of aboveground net primary production, species and phylogenetic diversity do not increase with increasing elevation in alpine grasslands. Global Ecology and Conservation43, e02464.

Han F S, Yu C Q, Fu G. 2022. Warming alters elevation distributions of soil bacterial and fungal communities in alpine grasslands. Global Ecology and Conservation39, e02306.

Huang S, Fu G. 2023. Impacts of climate change and human activities on plant species α-diversity across the Tibetan grasslands. Remote Sensing15, 2947.

Huang S, Zha X, Fu G. 2023. Affecting factors of plant phyllosphere microbial community and their responses to climatic warming - A Review. Plants12, 2891.

Jiao C, Zhao D, Zeng J, Guo L, Yu Z. 2020. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of planktonic and benthic bacterial communities within multiple lakes. Science of the Total Environment740, 140010.

Kazenel M R, Kivlin S N, Taylor D L, Lynn J S, Rudgers J A. 2019. Altitudinal gradients fail to predict fungal symbiont responses to warming. Ecology100, c2740.

Khlifa R, Houle D, Morin H, Kembel S W. 2021. Inconsistent effects of nitrogen canopy enrichment and soil warming on black spruce epiphytic phyllosphere bacterial communities, taxa, and functions. Canadian Journal of Forest Research51, 1199–1207.

Kim H, Lee K K, Jeon J, Harris W A, Lee Y H. 2020. Domestication of Oryza species eco-evolutionarily shapes bacterial and fungal communities in rice seed. Microbiome8, 20.

Kivlin S N, Kazenel M R, Lynn J S, Taylor D L, Rudgers J A. 2019. Plant identity influences foliar fungal symbionts more than elevation in the colorado rocky mountains. Microbial Ecology78, 688–698.

Laforest-Lapointe I, Messier C, Kembel S W. 2016. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome4, 27.

Lee M R, Hawkes C V. 2021. Plant and soil drivers of whole-plant microbiomes: Variation in Switchgrass fungi from coastal to mountain sites. Phytobiomes Journal5, 69–79.

Li J, Bates K A, Hoang K L, Hector T E, Knowles S C L, King K C. 2023. Experimental temperatures shape host microbiome diversity and composition. Global Change Biology29, 41–56.

Li J, Liu Y X, Lu P P, Wang Y L, Li Z F, Zhang Y, Gan H Y, Li X C, Mandal D, Cai J, Guo Z X, Yao H, Guo L D. 2022. Community assembly of fungi and bacteria along soil-plant continuum differs in a Zoige wetland. Microbiology Spectrum10, e022602.

Li Y, Pan J X, Zhang R Y, Wang J S, Tian D S, Niu S L. 2022. Environmental factors, bacterial interactions and plant traits jointly regulate epiphytic bacterial community composition of two alpine grassland species. Science of the Total Environment836, 155665.

Li Y, Tian D, Pan J, Zhou B, Zhang R, Song L, Wang J, Niu S. 2023. Different patterns and drivers of fungal communities between phyllosphere and rhizosphere in alpine grasslands. Functional Ecology37, 523–535.

Liang X Y, Zhang T, Lu X K, Ellsworth D S, BassiriRad H, You C M, Wang D, He P C, Deng Q, Liu H, Mo J M, Ye Q. 2020. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Global Change Biology26, 3585–3600.

Liu C, Cui Y, Li X, Yao M. 2021. Microeco: An R package for data mining in microbial community ecology. FEMS Microbiology Ecology97, fiaa1255.

Maguire V G, Bordenave C D, Nieva A S, Llames M E, Colavolpe M B, Garriz A, Ruiz O A. 2020. Soil bacterial and fungal community structure of a rice monoculture and rice–pasture rotation systems. Applied Soil Ecology151, 103535.

Manching H C, Balint-Kurti P J, Stapleton A E. 2014. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science5, 403.

Mechan-Llontop M E, Tian L, Sharma P, Heflin L, Bernal-Galeano V, Haak D C, Clarke C R, Vinatzer B A. 2021. Experimental evidence pointing to rain as a reservoir of tomato phyllosphere microbiota. Phytobiomes Journal5, 382–399.

Meyer K M, Porch R, Muscettola I E, Vasconcelos A L S, Sherman J K, Metcalf C J E, Lindow S E, Koskella B. 2022. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. ISME Journal16, 1376–1387.

Morella N M, Weng F C H, Joubert P M, Metcalf C J E, Lindow S, Koskella B. 2020. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proceedings of the National Academy of Sciences of the United States of America117, 1148–1159.

Niu B, Fu G. 2024. Response of plant diversity and soil microbial diversity to warming and increased precipitation in alpine grasslands on the Qinghai-Xizang Plateau - A review. Science of the Total Environment912, 168878.

Pati B R. 1992. Effect of spraying nitrogen-fixing phyllospheric bacterial isolates on rice plants. Zentralblatt fur Mikrobiologie147, 441–446.

Perazzolli M, Vicelli B, Antonielli L, Longa C M O, Bozza E, Bertini L, Caruso C, Pertot I. 2022. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Scientific Reports12, 18839.

Ren G D, Zhu C W, Alam M S, Tokida T, Sakai H, Nakamura H, Usui Y, Zhu J G, Hasegawa T, Jia Z J. 2015. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant and Soil392, 27–44.

Revelle W, Condon D M. 2019. Reliability from α to ω: A tutorial. Psychological Assessment31, 1395–1411.

Sanjenbam P, Shivaprasad P V, Agashe D. 2023. Impact of phyllosphere Methylobacterium on host rice landraces. Microbiology Spectrum10, e0081022.

Truchado P, Gil M I, Suslow T, Allende A. 2018. Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS ONE13, e0199291.

Vorholt J A. 2012. Microbial life in the phyllosphere. Nature Reviews Microbiology10, 828–840.

de Vries F T, Griffiths R I, Bailey M, Craig H, Girlanda M, Gweon H S, Hallin S, Kaisermann A, Keith A M, Kretzschmar M, Lemanceau P, Lumini E, Mason K E, Oliver A, Ostle N, Prosser J I, Thion C, Thomson B, Bardgett R D. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications9, 3033.

Wang J, Li M, Yu C, Fu G. 2022. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Frontiers in Plant Science12, 798633.

Wang J, Yu C, Fu G. 2021. Warming reconstructs the elevation distributions of aboveground net primary production, plant species and phylogenetic diversity in alpine grasslands. Ecological Indicators133, 108355.

Wang Q, Liu Y Y, Su Y, Cheng C, Shang B, Agathokleous E, Feng Z Z. 2022. Effects of elevated ozone on bacterial communities inhabiting the phyllo- and endo-spheres of rice plants. Science of the Total Environment830, 154705.

Warton D I, Wright S T, Wang Y. 2012. Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution3, 89–101.

Webb C O, Ackerly D D, McPeek M A, Donoghue M J. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics33, 475–505.

Wei Y Q, Lan G Y, Wu Z X, Chen B Q, Quan F, Li M M, Sun S Q, Du H N. 2022. Phyllosphere fungal communities of rubber trees exhibited biogeographical patterns, but not bacteria. Environmental Microbiology24, 3777–3790.

Xiao J, Yu C, Fu G. 2023. Response of aboveground net primary production, species and phylogenetic diversity to warming and increased precipitation in an alpine meadow. Plants12, 3017.

Xie J, Wang X, Xu J, Xie H, Cai Y, Liu Y, Ding X. 2021. Strategies and structure feature of the aboveground and belowground microbial community respond to drought in wild rice (Oryza longistaminata). Rice14, 79.

Xing L, Zhi Q Q, Hu X, Liu L L, Xu H, Zhou T, Yin H Q, Yi Z X, Li J. 2022. Influence of association network properties and ecological assembly of the foliar fugal community on crop quality. Frontiers in Microbiology13, 783923.

Yan K, Han W H, Zhu Q L, Li C R, Dong Z, Wang Y P. 2022. Leaf surface microtopography shaping the bacterial community in the phyllosphere: Evidence from 11 tree species. Microbiological Research254, 126897.

Yu C Q, Han F S, Fu G. 2019. Effects of 7 years experimental warming on soil bacterial and fungal community structure in the Northern Tibet alpine meadow at three elevations. Science of the Total Environment655, 814–822.

Zahn G, Amend A S. 2019. Foliar fungi alter reproductive timing and allocation in Arabidopsis under normal and water-stressed conditions. Fungal Ecology41, 101–106.

Zha X J, Tian Y, Ouzhu, Fu G. 2022. Response of forage nutrient storages to grazing in alpine grasslands. Frontiers in Plant Science13, 991287.

Zhang G, Shen Z, Fu G. 2022. Geo-distribution patterns of soil fungal community of Pennisetum flaccidum in Tibet. Journal of Fungi8, 1230.

Zhang H, Fu G. 2021. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land Degradation & Development32, 1821–1832.

Zhang X Z, Shen Z X, Fu G. 2015. A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology87, 32–38.

Zheng H P, Yang T J, Bao Y Z, He P P, Yang K M, Mei X L, Wei Z, Xu Y C, Shen Q R, Banerjee S. 2021. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biology & Biochemistry157, 108230.

Zhong Z, Fu G. 2022. Response of soil fungal species, phylogenetic and functional diversity to diurnal asymmetric warming in an alpine agricultural ecosystem. AgricultureEcosystems & Environment335, 107993.

Zhong Z, Zhang G, Fu G. 2023. Effect of experiment warming on soil fungi community of Medicago sativaElymus nutans and Hordeum vulgare in Tibet. Journal of Fungi9, 0885.

Zhong Z M, Zhang G Y, Fu G. 2024. Response of soil bacteria community to experiment warming in three agroecosystems of the Tibet. Global Ecology and Conservation50, e02837.

Zhou J Z, Ning D L. 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews81, e00002–e00019.

Zhu Y G, Xiong C, Wei Z, Chen Q L, Ma B, Zhou S Y D, Tan J, Zhang L M, Cui H L, Duan G L. 2022. Impacts of global change on the phyllosphere microbiome. New Phytologist234, 1977–1986.

Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, Gaucher P, Gielly L, Giguet-Covex C, Iribar A, Rejou-Mechain M, Raye G, Rioux D, Schilling V, Tymen B, Viers J, Zouiten C, Thuiller W, Coissac E, Chave J. 2019. Body size determines soil community assembly in a tropical forest. Molecular Ecology28, 528–543.

[1] Shakoor Abdul, Zaib Gul, Ming Xu. Tracing the contribution of cattle farms to methane emissions through bibliometric analyses[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1220-1233.
[2] LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2345-2356.
[3] MA Xin-ling, LIU Jia, CHEN Xiao-fen, LI Wei-tao, JIANG Chun-yu, WU Meng, LIU Ming, LI Zhong-pei. Bacterial diversity and community composition changes in paddy soils that have different parent materials and fertility levels[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2797-2806.
[4] Daisuke Hayasaka, Shingo Fujiwara, Taizo Uchida. Impacts of invasive Iris pseudacorus L. (yellow flag) establishing in an abandoned urban pond on native semi-wetland vegetation[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1881-1887.
[5] ZHAO Cai-yun, YU Xiao-dong, LIU Yong-bo, LI Jun-sheng. Effects of insect-resistant transgenic cotton on ground-dwelling beetle assemblages (Coleoptera)[J]. >Journal of Integrative Agriculture, 2016, 15(2): 381-390.
[6] CHEN Guo-qi, ZHANG Chao-bin, MA Ling, QIANG Sheng, John A Silander , Li Li Qi. Biotic Homogenization Caused by the Invasion of Solidago canadensis in China[J]. >Journal of Integrative Agriculture, 2013, 12(5): 835-845.
[7] ZHANG Zhong-yi, LIN Wen-xiong, YANG Yan-hui, CHEN Hui, CHEN Xin-jian. Effects of Consecutively Monocultured Rehmannia glutinosa L. on Diversity of Fungal Community in Rhizospheric Soil[J]. >Journal of Integrative Agriculture, 2011, 10(9): 1374-1384.
No Suggested Reading articles found!