Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 2941-2954    DOI: 10.1016/j.jia.2024.02.006
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change

Qing Liang1, 2, Xujing Yang1, 2, Yuheng Huang1, 2, Zhenwei Yang2, Meichen Feng1, 2#, Mingxing Qing2, 3, Chao Wang1, 2, Wude Yang1, 2, Zhigang Wang1, 2, Meijun Zhang1, 2, Lujie Xiao1, 2, Xiaoyan Song1, 2

1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China

2 Smart Agriculture College, Shanxi Agricultural University, Taigu 030801, China

3 College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
了解气候变化下冬小麦的适宜区和评估冻害风险对于冬小麦的种植至关重要。本研究利用优化的MaxEnt模型预测4种共享社会经济路径下当前时期(1970—2020年)和未来时期(2021—2100年)冬小麦的潜在地理分布。采用统计降尺度方法对未来气候数据进行降尺度处理,考虑冬小麦生育期建立科学实用的冻害指数(FII),并利用M-K检验分析冬小麦冻害突变特征。结果表明,优化的MaxEnt模型预测精度AUC值为0.976;影响冬小麦空间分布范围的主要环境变量是最冷月份最低温、最湿季节降水量和年降水量;冬小麦总适宜区面积约为4.40×107hm2。在2070年代,中等适宜区面积在SSP245下增幅最大,为9.02×105hm2,在SSP370下增幅最小,为6.53×105hm2。总适宜区质心坐标有北移趋势。黄土高原高纬度高海拔地区冻害的潜在风险显著增加,山西忻州北部冻害最严重,黄土高原南部冻害最轻。温度、降水、地理位置等环境因子对冬小麦适宜区分布和冻害风险有重要影响。未来应更加关注冬小麦种植区北界和冻害风险区,提供冻害预警和相应的管理策略。


Abstract  
Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.  We used an optimized Maximum Entropy (MaxEnt) Model to predict the potential distribution of winter wheat in the current period (1970–2020) and the future period (2021–2100) under four shared socioeconomic pathway scenarios (SSPs).  We applied statistical downscaling methods to downscale future climate data, established a scientific and practical freezing injury index (FII) by considering the growth period of winter wheat, and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall (M-K) test.  The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.  The minimum temperature in the coldest month, precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.  The total suitable area of winter wheat was approximately 4.40×107 ha in the current period.  In the 2070s, the moderately suitable areas had the greatest increase by 9.02×105 ha under SSP245 and the least increase by 6.53×105 ha under SSP370.  The centroid coordinates of the total suitable areas tended to move northward.  The potential risks of freezing injury in the high-latitude and -altitude areas of the Loess Plateau, China increased significantly.  The northern areas of Xinzhou in Shanxi Province, China suffered the most serious freezing injury, and the southern areas of the Loess Plateau suffered the least.  Environmental factors such as temperature, precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.  In the future, greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.


Keywords:  climate change scenarios       winter wheat        freezing injury risk        downscaling        MaxEnt  
Received: 09 June 2023   Accepted: 27 November 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (31201168), the Basic Research Program of Shanxi Province, China (20210302123411), and the earmarked fund for Modern Agro-industry Technology Research System, China (2022-07).
About author:  Qing Liang, E-mail: liangqingliam@163.com; #Correspondence Meichen Feng, Tel: +86-354-6285019, E-mail: fmc101@163.com

Cite this article: 

Qing Liang, Xujing Yang, Yuheng Huang, Zhenwei Yang, Meichen Feng, Mingxing Qing, Chao Wang, Wude Yang, Zhigang Wang, Meijun Zhang, Lujie Xiao, Xiaoyan Song. 2024. Prediction of the potential distribution and analysis of the freezing injury risk of winter wheat on the Loess Plateau under climate change. Journal of Integrative Agriculture, 23(9): 2941-2954.

Alireza H, Mehdi R, Ebrahim I D, Ahmad N, Bhagirath S H. 2021. Regeneration capacity after exposure to freezing in wild oat (Avena ludoviciana Durieu.) and turnipweed (Rapistrum rugosum (L.) All.) in comparison with winter wheat. Environmental and Experimental Botany, 181104271.

Bao Y Z, Xing J P, Liang Y, Ren Z P, Fu L S, Yu J, Wang D J, Zhang D, Xu Q H, Cang J. 2022. Analysis of overwintering indexes of winter wheat in alpine regions and establishment of a cold resistance model. Field Crops Research275, 108347.

Bergjord Olsen A K, Persson T, de Wit A, Nkurunziza L, Sindhøj E, Eckersten H. 2018. Estimating winter survival of winter wheat by simulations of plant frost tolerance. Journal of Agronomy and Crop Science204, 62–73.

Broberg M C, Hayes F, Harmens H, Uddling J, Mills G, Pleijel H. 2023. Effects of ozone, drought and heat stress on wheat yield and grain quality. Agriculture Ecosystems & Environment352, 108505.

Brown J L. 2014. SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution5, 694–700.

Chauvier Y, Thuiller W, Brun P, Lavergne S, Descombes P, Karger D N, Renaud J, Zimmermann N E. 2021. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs91, e01433.

Ehteram M, Farhad S, Hojat M, Saeed K, Vijay F. 2018. Reservoir operation based on evolutionary algorithms and multi-criteria decision-making under climate change and uncertainty. Journal of Hydroinformatics20, 332–355.

Elith J, Phillips S J, Hastie T, Dudík M, Chee Y E, Yates C J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions17, 43–57.

Feng M C, Guo X L, Wang C, Yang W D, Shi C C, Ding G W, Zhang X R, Xiao L J, Zhang M J, Song X Y. 2018. Monitoring and evaluation in freeze stress of winter wheat (Triticum aestivum L.) through canopy hyperspectrum reflectance and multiple statistical analysis. Ecological Indicators84, 290–297.

Gao M L, Zhang X B, Sun Z G, Sun N, Li S J, Gao Y H, Zhang C Y. 2018. Wheat yield and growing period in response to field warming in different climatic zones in China. Scientia Agricultura Sinica51, 386–400. (in Chinese)

Guo J H, Bai X H, Shi W P, Li R J, Hao X Y, Wang H F, Gao Z Q, Guo J, Lin W. 2021. Risk assessment of freezing injury during overwintering of wheat in the northern boundary of the Winter Wheat Region in China. PeerJ9, e12154.

Guo Y L, Zhao Z F, Qiao H J, Wang R, Wei H Y, Wang L K, Gu W, Li X. 2020. Challenges and development trend of species distribution model. Advances in Earth Science35, 1292–1305. (in Chinese)

Hill N J, Tobin A J, Reside A E, Pepperell J G, Bridge T C L. 2016. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Global Change Biology22, 1086–1096.

Hoque M A A, Pradhan B, Ahmed N, Sohel M S I. 2021. Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Science of the Total Environment756, 143600.

Huang Z D, Bai Y, Alatalo J M, Yang Z Q. 2020. Mapping biodiversity conservation priorities for protected areas: A case study in Xishuangbanna Tropical Area, China. Biological Conservation249, 108741.

Kong W Y, Li X H, Zou H F. 2019. Optimizing MaxEnt model in the prediction of species distribution. The Journal of Applied Ecology30, 2116–2128.

Lahsen M, Ribot J. 2022. Politics of attributing extreme events and disasters to climate change. Wiley Interdisciplinary Reviews (Climate Change)13, e750.

Li D H, Zou L W, Zhou T J. 2017. Changes of extreme indices over China in response to 1.5°C global warming projected by a regional climate model. Advances in Earth Science32, 446–457. (in Chinese)

Li K N, Yang X G, Tian H Q, Pan S F, Liu Z J, Lu S. 2016. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. International Journal of Biometeorology60, 21–32.

Li X, Cai J, Liu F. 2015a. Spring freeze effect on wheat yield is modulated by winter temperature fluctuations: Evidence from meta-analysis and simulating experiment. Journal of Agronomy and Crop Science201, 288–300.

Li X, Cai J, Liu F. 2015b. Wheat plants exposed to winter warming are more susceptible to low temperature stress in the spring. Plant Growth Regulation77, 11–19.

Liu C, White M, Newell G. 2011. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography34, 232–243.

Liu L, Zhang Y Y, Huang Y, Zhang J D, Mou Q Y, Qiu J Y, Wang R L, Li Y J, Zhang D Q. 2021. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environmental Science and Pollution Research29, 22237–22250.

Liu S B, Chen Y N, Chen Y P, Deng H J, Fang G H. 2016. Study on the depth of water uptake by Populus euphratica trees of different ages in the lower reaches of the Heihe River, based on the stable isotope techniques. Acta Ecologica Sinica36, 729–739. (in Chinese)

Liu Y J, Chen J, Pan T, Liu Y H, Zhang Y H, Ge Q S, Ciais P, Penuelas J. 2020. Global socioeconomic risk of precipitation extremes under climate change. Earth’s Future8, e2019EF001331.

Meng F Y, Feng L P, Zhang F Y, Zhang Y, Wu L, Wang C L, Yan J T, Peng M X, Mo Z H, Yu W D. 2019. Temporal and spatial variations of winter wheat freezing injury in northern winter wheat region. Acta Agronomica Sinica45, 1576–1585. (in Chinese)

Ning Y, Lei J R, Song X Q, Han S M, Zhong Y F. 2018. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant. Chinese Journal of Plant Ecology42, 946–954.

Panda R MBehera M D. 2019. Assessing harmony in distribution patterns of plant invasions: A case study of two invasive alien species in India. Biodiversity and Conservation28, 2245–2258.

Pellicone G, Caloiero T, Modica G, Guagliardi I. 2018. Application of several spatial interpolation techniques to monthly rainfall data in the Calabria region (southern Italy). International Journal of Climatology38, 3651–3666.

Phillips S J, Anderson R P, Dudík M, Schapire R E, Blair M E. 2017. Opening the black box: An open-source release of Maxent. Ecography40, 887–893.

Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling190, 231–259.

Phillips S J, Dudík M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography31, 161–175.

Qu C H, Li X X, Ju H, Liu Q. 2019. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. Journal of Integrative Agriculture, 18, 1379–1391.

Radosavljevic A, Anderson R P. 2014. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography41, 629–643.

Rapacz M, Macko-Podgórni A, Jurczyk BKuchar L. 2022. Modeling wheat and triticale winter hardiness under current and predicted winter scenarios for Central Europe: A focus on deacclimation. Agricultural and Forest Meteorology313, 108739.

Shi X L, Chen X L, Dai Y W, Hu G Q. 2020. Climate sensitivity and feedback of BCC-CSM to idealized CO2 forcing from CMIP5 to CMIP6. Journal of Meteorological Research34, 865–878.

Shukla P R, Skea J, Slade R, Al Khourdajie A, Van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J. 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.

Tang Y, Zhao R N, Ren G, Cao F L, Zhu Z L. 2021. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors. Journal of Beijing Forestry University43, 23–32. (in Chinese)

Wang S T. 1982. Statistical methods for the first and last dates of steady daily mean temperatures passing through the various levels of the cut-off temperature. Meteorology6, 29–30.

Wei Y K, An P L, Zhang G L, Jiang L, Meng L J. 2021. Analysis on the occurrence rules of meteorological disasters and diseases and pests of winter wheat in Hebei Province based on disasters data. Journal of China Agricultural University26, 12. (in Chinese)

Wu J, Guo X J, Xu Y L, Pan J. 2015. Regional climate change and uncertainty analysis based on four regional climate model simulations over China. Atmospheric and Oceanic Science Letters8, 147–152.

Xian X QZhao H XGuo J YZhang G FLiu HLiu Wan XWan F H. 2022. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change. Journal of Integrative Agriculture, 22, 2441–2455.

Xie Y K, Wang C, Yang W D, Feng M C, Qiao X X, Song J Y. 2020. Canopy hyperspectral characteristics and yield estimation of winter wheat (Triticum aestivum) under low temperature injury. Scientific Reports10, 1–10.

Xu Y, Gao X J, Giorgi F, Zhou B T, Shi Y, Wu J, Zhang Y X. 2018. Projected changes in temperature and precipitation extremes over China as measured by 50-yr return values and periods based on a CMIP5 ensemble. Advances in Atmospheric Sciences35, 376–388.

Zhang L, Chu Q Q, Jiang Y L, Chen F, Lei Y D. 2021. Impacts of climate change on drought risk of winter wheat in the North China Plain. Journal of Integrative Agriculture, 20, 26012612.

Zhao C, Huang Y, Li Z, Chen M. 2018. Drought monitoring of southwestern China using insufficient GRACE data for the long-term mean reference frame under global change. Journal of Climate31, 6897–6911.

Zhao G H, Cui X Y, Sun J J, Li T T, Wang Q, Ye X Z, Fan B G. 2021. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecological Indicators132, 108256.

Zhao H XXian X QGuo J YYang N WZhang Y PChen B XHuang H KLiu W X2022. Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change. Journal of Integrative Agriculture, 22, 2783–2795.

Zheng D X, Yang X G, Ines Minguez M, Mu C Y, He Q, Wu X. 2018. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agricultural and Forest Meteorology260, 1–8.

Zhu H H, Wu Y F, Song J Q, Du K M. 2018. Analysis to late frost damage for winter wheat based on meteorological factors-taking Henan Province as an example. Chinese Journal of Agrometeorology39, 59–68. (in Chinese)

[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
No Suggested Reading articles found!