Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2783-2795    DOI: 10.1016/j.jia.2022.12.004
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change 
ZHAO Hao-xiang1*, XIAN Xiao-qing1*, GUO Jian-yang1, YANG Nian-wan1, 2, ZHANG Yan-ping3, CHEN Bao-xiong3, HUANG Hong-kun3, LIU Wan-xue1#
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, P.R.China
2 Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, P.R.China
3 Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

外来入侵蚂蚁是世界范围内最具侵略性、竞争性和广泛的外来入侵物种之一。小火蚁Wasmannia auropunctata是太平洋地区最具威胁性的外来入侵蚂蚁,被列入 "世界100种恶性外来入侵物种",已经在全世界许多国家和岛屿上建立了种群。最近在我国东南地区发现了小火蚁的野生种群,对我国的农业、经济、环境、和公共健康构成了巨大的潜在威胁。识别小火蚁在我国的潜在地理分布可以明确可能面临入侵风险的地区。因此,我们根据小火蚁的全球分布记录和生物气候变量,利用集合模型预测了气候变化下其在我国的地理分布格局。我们的研究结果表明,在八个物种分布模型中,ANNFDAGBMRFCTAGLMSREMaxEnt更准确。ANNFDAGBMRF的平均TSS值分别为0.8200.8100.8430.857,平均AUC值分别为0.9460.9540.9680.979。集合模型的平均TSSAUC值分别为0.8820.972,表明集合模型的预测结果比用单一模型的预测结果更可靠。在现代和未来气候条件下,小火蚁在我国的潜在地理分布主要位于南部地区。在气候变化情景下,小火蚁的地理分布有着向高纬度地区转移的趋势。小火蚁在我国的地理分布格局主要受温度变量影响,温度年较差(bio7)和最热季度平均温度(bio10)是影响小火蚁地理分布的重要环境变量。小火蚁在我国南部地区有着广泛的潜在入侵风险区域,因制定小火蚁在我国南方地区的的早期预警、监测、预防和控制策略。



Abstract  

Invasive alien ants (IAAs) are among the most aggressive, competitive, and widespread invasive alien species (IAS) worldwide.  Wasmannia auropunctata, the greatest IAAs threat in the Pacific region and listed in “100 of the world’s worst IAS”, has established itself in many countries and on islands worldwide.  Wild populations of Wauropunctata were recently reported in southeastern China, representing a tremendous potential threat to China’s agricultural, economic, environmental, public health, and social well-being.  Estimating the potential geographical distribution (PGD) of Wauropunctata in China can illustrate areas that may potentially face invasion risk.  Therefore, based on the global distribution records of Wauropunctata and bioclimatic variables, we predicted the geographical distribution pattern of Wauropunctata in China under the effects of climate change using an ensemble model (EM).  Our findings showed that artificial neural network (ANN), flexible discriminant analysis (FDA), gradient boosting model (GBM), Random Forest (RF) were more accurate than categorical regression tree analysis (CTA), generalized linear model (GLM), maximum entropy model (MaxEnt) and surface distance envelope (SRE).  The mean TSS values of ANN, FDA, GBM, and RF were 0.820, 0.810, 0.843, and 0.857, respectively, and the mean AUC values were 0.946, 0.954, 0.968, and 0.979, respectively.  The mean TSS and AUC values of EM were 0.882 and 0.972, respectively, indicating that the prediction results with EM were more reliable than those with the single model.  The PGD of Wauropunctata in China is mainly located in southern China under current and future climate change.  Under climate change, the PGD of Wauropunctata in China will expand to higher-latitude areas.  The annual temperature range (bio7) and mean temperature of the warmest quarter (bio10) were the most significant variables affecting the PGD of Wauropunctata in China.  The PGD of Wauropunctata in China was mainly attributed to temperature variables, such as the annual temperature range (bio7) and the mean temperature of the warmest quarter (bio10).  The populations of Wauropunctata in southern China have broad potential invasion areas.  Developing strategies for the early warning, monitoring, prevention, and control of Wauropunctata in southern China requires more attention.

Keywords:  invasive alien ants       potential geographical distribution        Wasmannia auropunctata        climate change        Ensemble model  
Received: 18 August 2022   Accepted: 28 October 2022
Fund: 

This work was supported by the National Key R&D Program of China (2021YFC2600400), the Technology Innovation Program of the Chinese Academy of Agricultural Sciences (caascx-2017-2022-IAS), and the Key R&D Program of Yunnan Province, China (202103AF140007)

About author:  ZHAO Hao-xiang, E-mail: zhao834323482@163.com; XIAN Xiao-qing, E-mail: xianxiaoqing@caas.cn; #Correspondence LIU Wan-xue, E-mail: liuwanxue@caas.cn * These authors contributed equally to this study.

Cite this article: 

ZHAO Hao-xiang, XIAN Xiao-qing, GUO Jian-yang, YANG Nian-wan, ZHANG Yan-ping, CHEN Bao-xiong, HUANG Hong-kun, LIU Wan-xue. 2023. Monitoring the little fire ant, Wasmannia auropunctata (Roger 1863), in the early stage of its invasion in China: Predicting its geographical distribution pattern under climate change . Journal of Integrative Agriculture, 22(9): 2783-2795.

Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology43, 1223–1232.

Alvarez-Blanco P, Broggi J, Cerdá X, González-Jarri O, Angulo E. 2020. Breeding consequences for a songbird nesting in Argentine ant’ invaded land. Biological Invasions22, 2883–2898.

Alvarez-Blanco P, Cerdá X, Hefetz A, Boulay R, Bertó-Moran A, Díaz-Paniagua C, Lenoir A, Billen J, Liedtke H C, Chauhan K R, Bhagavathy G, Angulo E. 2021. Effects of the argentine ant venom on terrestrial amphibians. Conservation Biology35, 216–226.

Angulo E, Hoffmann B D, Ballesteros-Mejia L, Taheri A, Balzani P, Bang A, Renault D, Cordonnier M, Bellard C, Diagne C, Ahmed D A, Watari Y, Courchamp F. 2022. Economic costs of invasive alien ants worldwide. Biological Invasions24, 2041–2060.

Arnan X, Andersen A N, Gibb H, Parr C L, Sanders N J, Dunn R, Angulo E, Baccaro F B, Bishop T R, Boulay R, Castracani C, Cerdá X, Toro I D, Delsinne T, Donoso D A, Elten E K, Fayle T M, Fitzpatrick M C, Gómez C, Grasso D A, et al. 2018. Dominance-diversity relationships in ant communities differ with invasion. Global Change Biology24, 4614–4625.

Bertelsmeier C, Luque G M, Hoffmann B D, Courchamp F. 2015. Worldwide ant invasions under climate change. Biodiversity and Conservation24, 117–128.

Bertelsmeier C, Ollier S, Liebhold A M, Brockerhof E G, Ward D, Keller L. 2018. Recurrent bridgehead effects accelerate global alien ant spread. Proceedings of the National Academy of Sciences of the United States of America, 115, 5486–5491.

Brown J L. 2014. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution5, 694–700.

Brown J L, Hill D J, Dolan A M, Carnaval A C, Haywood A M. 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data5,180254.

CABI (Commonwealth Agricultural Bureaux International). 2022. Wasmannia auropunctata (little fire ant). [2022-07-22]. https://www.cabi.org/isc/datasheet/56704

Cabral S K, Hara A H, Niino-Duponte R Y. 2017. Response of little fire ant (Hymenoptera: Formicidae) colonies to insect growth regulators and hydramethylnon. Proceedings of the Hawaiian Entomological Society49, 1–10.

Cantor S B, Sun C C, Tortolero-Luna G, Richards-Kortum R, Follen M. 1999. A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. Journal of Clinical Epidemiology52, 885–892.

Chauvier Y, Thuiller W, Brun P, Lavergne S, Descombes P, Karger D N, Renaud J, Zimmermann N E. 2021. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs91, e01433.

Chen S, Zhao Y, Lu Y, Ran H, Xu Y J. 2022. First record of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), in Chinese mainland. Journal of Integrative Agriculture21, 1825–1829.

Chifflet L, Guzmán N V, Rey O, Confalonieri V A, Calcaterra L A. 2018. Southern expansion of the invasive ant Wasmannia auropunctata within its native range and its relation with clonality and human activity. PLoS ONE13, e0206602.

Cornelissen B, Neumann P, Schweiger O. 2019. Global warming promotes biological invasion of a honey bee pest. Global Change Biology25, 3642–3655.

Coulin C, de la Vega G J, Chifflet L, Calcaterra L A, Schilman P E. 2019. Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biological Invasions21, 3491–3504.

Davis N E, D J O’dowd D J, Green P T, Nally R M. 2008. Effects of an alien ant invasion on abundance, behavior, and reproductive success of endemic island birds. Conservation Biology22, 1165–1176.

Delabie J, Encarnação A, Cazorla I. 2021. Relations between the little fire ant, Wasmannia Auropunctata, and its associated mealybug, Planococcus citri, in brazilian cocoa farms. In: Williams D F ed., Exoti Ants CBiologyImpact and Control of Introduced Species. Westview Press, Boulder, Colorado, USA. pp. 91–103.

Deyrup M, Davis L, Cover S. 2000. Exotic ants in Florida. Transactions of the American Entomological Society126, 293–326.

Dormann C F, Calabrese J M, Guillera-Arroita G, Matechou E, Bahn V, Bartoń K, Beale C M, Ciuti S, Elith J, Gerstner K, Guelat J, Keil P, Lahoz-Monfort J, Pollock L J, Reineking B, Roberts D R, Schröder B, Thuiller W, Warton D I, Wintle B A, et al. 2018. Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecological Monographs88, 485–504.

Dunn R, Agosti D, Andersen A N, Arnan X, Bruhl C A, Cerdá X, Ellison A M, Fisher B L, Fitzpatrick M C, Gibb H, Gotelli N J, Gove A D, Guenard B, Janda M, Kaspari M, Laurent E J, Lessard J P, Longino J T, Majer J D, Menke S B, et al. 2009. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters12, 324–333.

Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loiselle B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M, Peterson A T, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography29, 129–151.

Eyer P A, Vargo E L. 2021. Breeding structure and invasiveness in social insects. Current Opinion in Insect Science46, 24–30.

Fasi J, Brodie G, Vanderoude C. 2012. Increases in crop pests caused by Wasmannia auropunctata in Solomon Islands subsistence gardens. Journal of Applied Entomology137, 580–588.

Ficetola G F, Thuiller W, Miaud C. 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species - the American bullfrog. Diversity and Distributions13, 476–485.

França S, Cabral H N. 2016. Predicting fish species distribution in estuaries: Influence of species’ ecology in model accuracy. EstuarineCoastal and Shelf Science180, 11–20.

Guisan A, Thuiller W. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letter, 8, 993–1009.

Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort J J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions25, 839–852.

Hao T, Elith J, Lahoz-Monfort J, Guillera-Arroita G. 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography43, 549–558.

Hijmans R J, Cameron S E, Parra J L, Jones P G, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology25, 1965–1978.

Holway D A, Lach L, Suarez A V, Tsutsui N D, Case T J. 2002. The causes and consequences of ant invasions. Annual Review of Ecology and Systematics33, 181–233.

Hulme P E. 2021. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth4, 666–679.

Killion M J, Grant W E, Vinson S B. 1995. Response of Baiomys taylori to changes in density of imported fire ants. Journal of Mammalogy76, 141–147.

King J R, Tschinkel W R. 2008. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proceedings of the National Academy of Sciences of the United States of America105, 20339–20343.

Krushelnycky P D, Loope L L, Reimer N J. 2005. The ecology, policy, and management of ants in Hawaii. Proceedings of the Hawaiian Entomological Society37, 1–25.

Lantschner M V, de la Vega G, Corley J C. 2019. Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: An overview. International Journal of Pest Management65, 190–206.

Leach K, Montgomery W I, Reid N. 2016. Modelling the influence of biotic factors on species distribution patterns. Ecological Modelling337, 96–106.

Lee W H, Jung J M, Lee H S, Lee J H, Jung S. 2021. Evaluating the invasion risk of longhorn crazy ants (Paratrechina longicornis) in South Korea using spatial distribution model. Journal of Asia-Pacific Entomology24, 279–287.

Lei J, Chen L, Li H. 2017. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environmental Monitoring and Assessment189, 404.

Lester P J, Gruber M A M. 2016. Booms, busts and population collapses in invasive ants. Biological Invasions18, 3091–
3101.

Lowe S, Browne M, Boudjelas S, De Poorter M. 2004. 100 of the World’s worst invasive alien species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) of the Species Survival Commission (SSC) of the World Conservation Union (IUCN).

Lubin Y D. 1984. Changes in the native fauna of the Galápagos Islands following invasion by the little red fire ant, Wasmannia auropunctataBiological Journal of the Linnean Society21, 229–242.

Nackley L L, West A G, Skowno A L, Bond W J. 2017. The nebulous ecology of native invasions. Trends in Ecology & Evolution32, 814–824.

Pearson R G, Thuiller W, Araújo M B, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson T P, Lees D C. 2006. Model-based uncertainty in species range prediction. Journal of Biogeography33, 1704–1711.

Peterson A T, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling213, 63–72.

Rabitsch W. 2011. The hitchhiker’s guide to alien ant invasions. BioControl56, 551–572.

Seni G, Elder J. 2010. Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions. Springer Cham. Springer Nature Switzerland AG.

Song J, Zhang H, Li M, Han W, Yin Y, Lei J. 2021. Prediction of spatiotemporal invasive risk of the red import fire ant, Solenopsis invicta (Hymenoptera: Formicidae), in China. Insects12, 874.

de Souza A L B, Delabie J H C, Fowler H G. 1988. Wasmannia spp. (Hym., Formicidae) and insect damages to cocoa in Brazilian farms. Journal of Applied Entomology122, 339–341.

Stachowicz J J, Terwin J R, Whitlatch R B, Osman R W. 2002. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences of the United States of America99, 15497–15500.

Tabor J A, Koch J B. 2021. Ensemble models predict invasive bee habitat suitability will expand under future climate scenarios in Hawai’i. Insects12, 443.

Thuiller W. 2003. BIOMOD - optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology9, 1353–1362.

Thuiller W, Georges D, Engler R, Breiner F. 2016. ‘biomod2’: Ensemble platform for species distribution modeling. R package version 4.2-1.

Vonshak M, Dayan T, Ionescu-Hirsh A, Freidberg A, Hefetz A. 2010. The little fire ant Wasmannia auropunctata: A new invasive species in the Middle East and its impact on the local arthropod fauna. Biological Invasions12, 1825–1837.

Wagner D L. 2020. Insect declines in the anthropocene. Annual Review of Entomology65, 457–480.

Warren D L, Glor R E, Turelli M. 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography33, 607–611.

Way M J, Bolton B. 1997. Competition between ants for coconut palm nesting sites. Journal of Natural History31, 439–455.

Westphal M I, Browne M, MacKinnon K, Noble I. 2008. The link between international trade and the global distribution of invasive alien species. Biological Invasions10, 391–398.

Wetterer J, Porter S. 2003. The little fire ant, Wasmannia auropunctata: Distribution, impact, and control. Sociobiology42, 1–41.

Wetterer J K. 2009. Species profile: Wasmannia auropunctata. Global invasive species database. [2022–07–13]. http://www.iucngisd.org/gisd/

Wetterer J K. 2013. Worldwide spread of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae). Terrestrial Arthropod Reviews6, 173–184.

Wisz M S, Hijmans R J, Li J, Peterson A T, Graham C H, Guisan A, NCEAS Predicting Species Distributions Working Group. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions14, 763–773.

Zhao G H, Cui X Y, Sun J J, Li T T, Wang Q, Ye X Z, Fan B G. 2021. Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecological Indicators132, 108256.

[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] Oluwaseyi Samuel OLANREWAJU, Olubukola Oluranti BABALOLA. The rhizosphere microbial complex in plant health: A review of interaction dynamics[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2168-2182.
No Suggested Reading articles found!