Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2138-2150    DOI: 10.1016/j.jia.2023.06.022
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling
PAN Song1, PENG De-liang1, 2, LI Ying-mei1, CHEN Zhi-jie1, ZHAI Ying-yan1, LIU Chen1, HONG Bo1#

1 Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi’ an 710043, P.R.China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

象耳豆根结线虫是一类在全球范围内发生且危害多种作物的重要病原线虫,其主要分布于全球的热带和亚热带地区。然而,目前关于影响其分布的主要环境因子以及未来潜在分布区域变化的研究还未有报道。在本研究中,我们根据象耳豆根结线虫在全球不同地区发生报道的相关数据,利用Maximum Entropy(MaxEnt)模型对这类根结线虫在中国及全球的潜在地域分布进行了预测。同时,我们利用3套气候模式(BCC-CSM2-MR, CanESM5CNRM-CM6-1)对象耳豆根结线虫到本世纪50年代和90年代的潜在分布区域进行了预测,对其在不同气候条件下潜在分布区域的变化进行了分析。结果显示,象耳豆根结线虫的最佳适生区域为亚洲、南美洲、北美洲和非洲北纬30度到南纬30度之间的区域。Bio16(全年最湿润季度的降水量)、bio10(全年最热季度的平均气温)以及bio11(全年最冷季度的平均气温)是影响象耳豆根结线虫潜在分布最重要的环境因子。进一步的预测结果显示,在未来的气候条件下,全球象耳豆根结线虫的最佳适生区域将不断向高纬度地区扩展。该结果将为象耳豆根结线虫的防控提供理论基础。


In recent years, Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas. However, the regions of potential distribution and the main contributing environmental variables for this nematode are unclear. Under the current climate scenario, we predicted the potential geographic distributions of M. enterolobii worldwide and in China using a Maximum Entropy (MaxEnt) model with the occurrence data of this species. Furthermore, the potential distributions of M. enterolobii were projected under three future climate scenarios (BCC-CSM2-MR, CanESM5 and CNRM-CM6-1) for the periods 2050s and 2090s. Changes in the potential distribution were also predicted under different climate conditions. The results showed that highly suitable regions for M. enterolobii were concentrated in Africa, South America, Asia, and North America between latitudes 30° S to 30° N. Bio16 (precipitation of the wettest quarter), bio10 (mean temperature of the warmest quarter), and bio11 (mean temperature of the coldest quarter) were the variables contributing most in predicting potential distributions of M. enterolobii. In addition, the potential suitable areas for M. enterolobii will shift toward higher latitudes under future climate scenarios. This study provides a theoretical basis for controlling and managing this nematode.

Keywords:  Meloidogyne enterolobii       species distribution model        MaxEnt        Climate change        future climate scenarios        centroid change  
Received: 05 December 2022   Accepted: 16 March 2023

This work was supported by the Key R&D Project of Shaanxi Province (2020ZDLNY07-06) and Science and Technology Program of Shaanxi Academy of Sciences (2022k-11). 

About author:  PAN Song, E-mail:; #Correspondence HONG Bo, Tel: +86-29-82291059, Fax: +86-29-83814127, E-mail:

Cite this article: 

PAN Song, PENG De-liang, LI Ying-mei, CHEN Zhi-jie, ZHAI Ying-yan, LIU Chen, HONG Bo. 2023. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. Journal of Integrative Agriculture, 22(7): 2138-2150.

de Almeida E J, Soares P L M, da Silva A R, dos Santos J M. 2008. New records on Meloidogyne mayaguensis in Brazil and comparative study with MincognitaNematologia Brasileira32, 236–241.

Araujo M B, Pearson R G, Thuiller W, Erhard M. 2005. Validation of species–climate impact models under climate change. Global Change Biology11, 1504–1513.

Berthou F, Kouassi A, Bossis M, Dantec J P, Eddaoudi M, Ferji Z, Pellé R, Taghzouti M, Ellissèche D, Mugniery D. 2003. Enhancing the resistance of the potato to southern root-knot nematodes by using Solanum sparsipilum germplasm. Euphytica132, 57–65.

Brito J A, Kaur R, Cetintas R, Stanley J D, Mendes M L, Powers T O, Dickson D W. 2010. Meloidogyne spp. infecting ornamental plants in Florida. Nematropica40, 87–103.

Brito J A, Stanley J D, Kaur R, Cetintas R, Di Vito M, Thies J A, Dickson D W. 2007. Effects of the Mi-1N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology39, 327.

Brito J, Powers T O, Mullin P G, Inserra R N, Dickson D W. 2004. Morphological and molecular characterization of Meloidogyne mayaguensis isolates from Florida. Journal of Nematology36, 232.

Brown J L, Bennett J R, French C M. 2017. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ5, e4095.

Carneiro R G, Mônaco A P A, Moritz M P, Nakamura K C, Scherer A. 2006. Identification of Meloidogyne mayaguensis in guava and weeds, in loam soil in Paraná State. Nematologia Brasileira30, 293–298.

Carneiro R M D G, Cirotto P A, Quintanilha A P, Silva D B, Carneiro R G. 2007. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with Pguajava cv. Paluma. Fitopatologia Brasileira32, 281–284.

Carneiro R M D G, Moreira W A, Almeida M R A, Gomes A C M M. 2001. First record of Meloidogyne mayaguensis on guava in Brazil. Nematologia Brasileira25, 223–228.

Carrillo-Fasio J A, Martínez-Gallardo J A, Ayala-Tafoya F, López-Orona C A, Allende-Molar R, Retes-Manjarrez J E. 2020. Screening for resistance to Meloidogyne enterolobii in Capsicum annuum landraces from Mexico. Plant Disease104, 817–822.

Cetintas R, Brito J A, Dickson D W. 2008. Virulence of four Florida isolates of Meloidogyne mayaguensis to selected soybean genotypes. Nematropica38, 127–136.

Cetintas R, Kaur R, Brito J A, Mendes M L, Nyczepir A P, Dickson D W. 2007. Pathogenicity and reproductive potential of Meloidogyne mayaguensis and Mfloridensis compared with three common Meloidogyne spp. Nematropica37, 21–32.

Charwat S M, Fisher J M, Wyss U. 2002. The effect of osmotic stress on desiccation survival and water content of four nematode species. Nematology4, 89–97.

Cobos M E, Peterson A T, Barve N, Osorio-Olvera L. 2019. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ7, e6281.

Dávila-Negrón M, Dickson D W. 2013. Comparative thermal-time requirements for development of Meloidogyne arenariaMincognita, and Mjavanica, at constant temperatures. Nematropica43, 152–163.

Ekesi S, De Meyer M, Mohamed S A, Virgilio M, Borgemeister C. 2016. Taxonomy, ecology, and management of native and exotic fruit fly species in Africa. Annual Review of Entomology61, 219–238.

Elling A A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology103, 1092–1102.

EPPO (European and Mediterranean Plant Protection Organization). 2022. EPPO global database. [2022-04-30].

Fleming T R, McGowan N E, Maule A G, Fleming C C. 2016. Prevalence and diversity of plant parasitic nematodes in Northern Ireland grassland and cereals, and the influence of soils and rainfall. Plant Pathology65, 1539–1550.

Galbieri R, Davis R F, Scoz L B, Belot J L, Skantar A M. 2020. First report of Meloidogyne enterolobii on cotton in Brazil. Plant Disease104, 2295–2295.

Groth M Z, Bellé C, Cocco K L T, Kaspary T E, Casarotto G, Cutti L, Schmitt J. 2017. First report of Meloidogyne enterolobii infecting the weed Jerusalem cherry (Solanum pseudocapsicum) in Brazil. Plant Disease101, 510.

Jiang D, Chen S, Hao M, Fu J, Ding F. 2018. Mapping the potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Scientific Reports8, 13093.

Jing W, Qi G J, Ma J, Ren Y L, Wang R, McKirdy S. 2020. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. Journal of Integrative Agriculture19, 2072–2082.

Jordaan E M, De Waele D, van Rooyen P J. 1989. Endoparasitic nematodes in maize roots in the Western Transvaal as related to soil texture and rainfall. Journal of Nematology21, 356.

Kiewnick S, Karssen G, Brito J A, Oggenfuss M, Frey J E. 2008. First report of root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Disease92, 1370–1370.

Kiewnick S, De Ssimoz M, Franck L. 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. Journal of Nematology41, 134–139.

Li Y, Li M, Li C, Liu Z. 2020. Optimized Maxent Model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests11, 302.

Liang Y J, Ariyawansa H A, Becker J O, Yang J I. 2020. The Evaluation of egg-parasitic fungi Paraboeremia taiwanensis and Samsoniella sp. for the biological control of Meloidogyne enterolobii on Chinese Cabbage. Microorganisms8, 828.

Lima I M, Martins M V V, Serrano L A L, Carneiro R M D G. 2007. Ocorrência de Meloidogyne mayaguensis em goiabeira cv. Paluma no estado do Espírito Santo. Nematologia Brasileira31, 132. (in Portuguese)

Lima I M, Souza R M, Silva C P, Carneiro R M. 2005. Meloidogyne spp. from preserved areas of atlantic forest in the State of Rio de Janeiro, Brazil. Nematologia Brasileira29, 31–38.

Liu B, Gao X, Zheng K, Ma J, Jiao Z, Xiao J, Wang H. 2020. The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: An ecological niche modelling approach. Pest Management Science76, 3096–3107.

Luquini L, Barbosa D, Ferreira C, Rocha L, Haddad F, Amorim E. 2019. First report of the root-knot nematode Meloidogyne enterolobii on bananas in Brazil. Plant Disease103, 377–377.

Merow C, Smith M J, Silander J A. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography36, 1–12.

Mo X, Hu S, Lu H, Lin Z, Liu S. 2018. Drought trends over the terrestrial China in the 21st century in climate change scenarios with ensemble GCM projections. Journal of Natural Resources33, 1244–1256. (in Chinese)

Moreno-Amat E, Mateo R G, Nieto-Lugilde D, Morueta-Holme N, Svenning J C, García-Amorena I. 2015. Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data. Ecological Modelling312, 308–317.

Niu J H, Jian H, Guo Q X, Chen C L, Wang X Y, Liu Q, Guo Y D. 2012. Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobiiPlant Pathology61, 809–819.

Peterson A T, Papeş M, Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63–72.

Peterson A T, Soberón J, Pearson R G, Anderson R P, Martinez-Meyer E, Nakamura M, Araujo M B. 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton Princeton University Press, USA.

Phillips S J, Anderson R P, Dudik M, Schapire R E, Blair M E. 2017. Opening the black box: An open-source release of Maxent. Ecography40, 887–893.

Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling190, 231–259.

Poornima K, Suresh P, Kalaiarasan P, Subramanian S, Ramaraju K. 2016. Root knot nematode, Meloidogyne enterolobii in Guava (Psidium guajava L.) a new record from India. Madras Agricultural Journal103, 359–365.

Radosavijevic A, Anderson R P. 2014. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography41, 629–643.

Rutter W B, Skantar A M, Handoo Z A, Mueller J D, Aultman S P, Agudelo P. 2019. Meloidogyne enterolobii found infecting root-knot nematode resistant sweetpotato in South Carolina, United States. Plant Disease103, 775.

Santos D, Abrantes I, Maleita C. 2019. The quarantine root-knot nematode Meloidogyne enterolobii–a potential threat to Portugal and Europe. Plant Pathology68, 1607–1615.

Schwarz T. 2019. Distribution, virulence, and sweetpotato resistance to Meloidogyne enterolobii in North Carolina. MSc thesis, Graduate Faculty of North Carolina State University, Raleigh, USA.

Schwarz T, Li C, Ye W, Davis E. 2020. Distribution of Meloidogyne enterolobii in eastern North Carolina and comparison of four isolates. Plant Health Progress21, 91–96.

Silva G S, Pereira A L, Araújo J R G, Carneiro R M. 2008. Occurrence of Meloidogyne mayaguensis on Psidium guajava in the State of Maranhão, Brazil. Nematologia Brasileira32, 242–243.

Silva M, Do Carmo Lopes D A, Santos C D G. 2017. Distribution of Meloidogyne enterolobii in guava orchards in the state of Ceará, Brazil. Revista Caatinga30, 335–342.

Singh N. 2020. Emerging problem of guava decline caused by Meloidogyne enterolobii and Fusarium oxysporum f. sp. psidii. Indian Phytopathology73, 373–374.

Souza R M, Nogueira M S, Lima I M, Melarato M, Dolinski C M. 2006. Management of the guava root-knot nematode in São João da Barra, Brazil, and report of new hosts. Nematologia Brasileira30, 165–169.

Suresh P, Poornima K, Kalaiarsan P, Nakkeeran S, Vijayakumar R M. 2019. Characterization of guava root knot nematode, Meloidogyne enterolobii occurring in Tamil Nadu, India. International Journal of Current Microbiology and Applied Sciences8, 1987–1998.

Swets J A. 1988. Measuring the accuracy of diagnostic systems. Science240, 1285–1293.

USDA (United States Department of Agriculture), PCIT (Phytosanitary Certificate Issuance and Tracking System). 2014. USDA Phytosanitary Certificate Issuance and Tracking SystemPhytosanitary Export Database.

Velloso J A, Maquilan M A D, Campos V P, Brito J A, Dickson D W. 2022. Temperature effects on development of Meloidogyne enterolobii and MfloridensisJournal of Nematology54, 20220013.

Wang Y, Wang X Q, Xie Y, Dong Y, Hu X Q, Yang Z X. 2015. First report of Meloidogyne enterolobii on Hot Pepper in China. Plant Disease99, 557–557.

Warren D L, Glor R E, Turelli M. 2010. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography33, 607–611.

Warren D L, Seifert S N. 2011. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications21, 335–342.

Wei J, Peng L, He Z, Lu Y, Wang F. 2020. Potential distribution of two invasive pineapple pests under climate change. Pest Management Science76, 1652–1663.

Wei J, Zhao Q, Zhao W, Zhang H. 2018. Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management. PeerJ6, e4832.

Wu X, Zhu X, Wang Y, Liu X, Chen L, Duan Y. 2018. The cold tolerance of the northern root-knot nematode, Meloidogyne haplaPLoS ONE13, e0190531.

Xiao S, Hou X Y, Cheng M, Deng M X, Cheng X, Liu G K. 2018. First report of Meloidogyne enterolobii on Ginger (Zingiber officinale) in China. Plant Disease102, 684–684.

Yang B, Eisenback J D. 1983. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology15, 381.

Zasada I A, Halbrendt J M, Kokalis-Burelle N, LaMondia J, McKenry M V, Noling J W. 2010. Managing nematodes without methyl bromide. Annual Review of Phytopathology48, 311–328.

Zhang P, Shao H, You C, Feng Y, Xie Z. 2020. Characterization of root-knot nematodes infecting mulberry in southern China. Journal of Nematology52, 1–8.

Zhu G P, Fan J Y, Wang M L, Chen M, Qiao H J. 2017. The importance of the shape of receiver operating characteristic (ROC) curve in ecological model evaluation - Case study of Hlyphantria cuneaJournal of Biosafety26, 184–190. (in Chinese)

No related articles found!
No Suggested Reading articles found!