Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (2): 739-753    DOI: 10.1016/j.jia.2024.07.004
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities

Shuting Yu1, Tianshu Wang1#, Li Wang1, Shuihong Yao1#, Bin Zhang2

1 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

 Highlights 
Rotation exerts a slight yet lasting effect on wheat root-associated bacteriome.
Rotation legacy shapes the complexity and stability of co-occurrence networks.
Wheat succeeding wheat-soybean had higher deterministic processes than wheat-maize.
Growth-promoting microbes were consistently enriched across wheat growth stages.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

小麦-玉米(麦玉)和小麦-大豆(麦豆)轮作系统是我国华北平原的主要轮作制度,对国家农业生产及其可持续性具有重要影响。由于轮作方式对土壤健康和作物生产力具有遗留效应,轮作系统对后续作物根部微生物组的影响已成为土壤管理研究的重要方面之一。本研究调查了连续两年麦玉和麦豆轮作对后茬小麦生长阶段根部细菌群落的招募和筛选的影响。结果显示,细菌群落的多样性和组成主要受到小麦根系部位和发育阶段的影响,而轮作方式对小麦根部细菌群落的影响虽相对轻微但显著。在两年麦玉轮作后,小麦根际和根表的共现网络更为复杂,其中与纤维素分解相关的OTU具有更高的连接度;在两年麦豆轮作后,根际的共现网络相对简单但稳定,而根表和内生的共现网络更为复杂,其中与尿素分解和固氮相关的OTU具有更高的连接度。虽然随机和确定性过程都参与了小麦根系细菌群落的组装,但在麦豆轮作后,确定性过程的贡献比麦玉轮作高出19.4-38.5%,这表明大豆遗留效应对小麦根系微生物选择具有更为显著的影响。具有固氮、产生吲哚乙酸和抑制疾病潜力的有益菌,如BetaproteobacterialesAzospirillalesDyella sp.等,在小麦所有根系部位和发育阶段中被持续富集,且可作为小麦产量的重要预测因子。本研究阐明了轮作方式在调节作物根系细菌群落动态中的作用,为利用微生物组调控技术优化小麦生产和增强土壤健康提供基础。



Abstract  
Wheat–maize (WM) and wheat–soybean (WS) double-cropping rotation systems are predominant in the North China Plain, with implications for national agricultural output and sustainability.  As rotation systems exert legacy effects on soil health and crop productivity, the role of crop rotation in shaping the root-associated microbiome of the succeeding crops has emerged as a pivotal aspect of crop management research.  Here, the effects of the preceding two cycles of WM and WS rotations on the recruitment and filtering of wheat root-associated bacterial communities across wheat developmental stages were investigated.  Our results revealed that bacterial community diversity and composition were primarily influenced by compartment and developmental stage, while the preceding rotation systems had a slight but significant effect on wheat root-associated bacterial communities.  The co-occurrence networks under WM were more complex in the wheat rhizosphere and rhizoplane, with the operational taxonomic units (OTUs) related to cellulolysis showing greater connectivity.  The co-occurrence networks under WS were simple but stable in the rhizosphere and complex in the rhizoplane and endosphere, with the OTUs related to ureolysis and nitrogen fixation showing greater connectivity.  While both stochastic and deterministic processes contributed to the assembly of wheat root-associated bacterial communities, the contributions of deterministic processes under WS were 19.4–38.5% higher than those under the WM rotation across the root-associated compartments, indicating the substantial impact of a soybean legacy effect on wheat root selection of microbes.  Plant growth-promoting rhizobacteria with the potential to fix nitrogen, produce indole-3-acetic acid, and inhibit diseases such as Betaproteobacteriales, Azospirillales and Dyella sp., were identified within the OTUs that were consistently enriched across all the wheat root-associated compartments and developmental stages, which were also important predictors of wheat yield.  This study elucidates the role of crop rotation in modulating the dynamics of crop root-associated bacterial communities, and underscores the potential of targeted microbiome manipulation for optimizing wheat production and enhancing soil health.


Keywords:  crop rotation       root-associated bacterial community        co-occurrence network        assembly process        wheat yield  
Received: 06 February 2024   Accepted: 07 May 2024
Fund: This study was financially supported by the National Natural Science Foundation of China (42107339) and the China Agriculture Research System (CARS-04).
About author:  Shuting Yu, Mobile: +86-15890666149, E-mail: shutingyu2014@163.com; #Correspondence Tianshu Wang, Tel: +86-10-82106719, E-mail: wangtianshu@caas.cn; Shuihong Yao, Tel: +86-10-82106719, E-mail: yaoshuihong@caas.cn

Cite this article: 

Shuting Yu, Tianshu Wang, Li Wang, Shuihong Yao, Bin Zhang. 2025. Preceding crop rotation systems shape the selection process of wheat root-associated bacterial communities. Journal of Integrative Agriculture, 24(2): 739-753.

Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma319, 156–166.

Bastian F, Bouziri L, Nicolardot B, Ranjard L. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry41, 262–275.

Bei S, Zhang Y, Li T, Christie P, Li X, Zhang J. 2018. Response of the soil microbial community to different fertilizer inputs in a Wheat–maize rotation on a calcareous soil. AgricultureEcosystems & Environment260, 58–69.

Benitez M S, Ewing P M, Osborne S L, Lehman R M. 2021. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biology and Biochemistry159, 108309.

Benjamini Y, Krieger A M, Yekutieli D. 2006. Adaptive linear step-up procedures that control the false discovery rate. Biometrika93, 491–507.

Bhuyan B, Debnath S, Pandey P. 2020. The rhizosphere microbiome and its role in plant growth in stressed conditions. In: Sharma S K, Singh U B, Sahu P K, Singh H V, Sharma P K, eds., Rhizosphere MicrobesSoil and Plant Functions. Springer Singapore, Singapore. pp. 503–529.

Callahan B J, McMurdie P J, Rosen M J, Han A W, Johnson A J A, Holmes S P. 2016. Dada2: High-resolution sample inference from illumina amplicon data. Nature Methods13, 581–583.

Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Lozupone C A, Turnbaugh P J, Fierer N, Knight R. 2011. Global patterns of 16s rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.

Chang J, Tian L, Leite M F A, Sun Y, Shi S, Xu S, Wang J, Chen H, Chen D, Zhang J, Tian C, Kuramae E E. 2022. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome10, 196.

Chen Q L, Ding J, Zhu D, Hu H W, Delgado-Baquerizo M, Ma Y B, He J Z, Zhu Y G. 2020. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry141, 107686.

Chen S, Waghmode T, Sun R, Kuramae E, Hu C, Liu B. 2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome7, 136.

Compant S, Cambon M C, Vacher C, Mitter B, Samad A, Sessitsch A. 2021. The plant endosphere world - bacterial life within plants. Environmental Microbiology23, 1812–1829.

Dai T, Zhang Y, Tang Y, Bai Y, Tao Y, Huang B, Wen D. 2016. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: A case study of microbial communities in the sediments of Hangzhou bay. FEMS Microbiology Ecology92, fiw150.

Dini-Andreote F, Stegen J C, van Elsas J D, Salles J F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America11, E1326–E1332.

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty N K, Bhatnagar S, Eisen J A, Sundaresan V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911.

Emmett B D, Buckley D H, Drinkwater L E. 2020. Plant growth rate and nitrogen uptake shape rhizosphere bacterial community composition and activity in an agricultural field. New Phytologist225, 960–973.

Emmett B D, Lévesque-Tremblay V, Harrison M J. 2021. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. The ISME Journal15, 2276–2288.

Fan K, Weisenhorn P, Gilbert J A, Chu H. 2018. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biology and Biochemistry125, 251–260.

Galindo F S, Rodrigues W L, Fernandes G C, Boleta E H M, Jalal A, Rosa P A L, Buzetti S, Lavres J, Filho M C M T. 2022. Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. European Journal of Agronomy134, 126471.

Geng S, Tan J, Li L, Miao Y, Wang Y. 2023. Legumes can increase the yield of subsequent wheat with or without grain harvesting compared to gramineae crops: A meta-analysis. European Journal of Agronomy142, 126643.

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. 2010. Significant acidification in major chinese croplands. Science327, 1008–1010.

Hannula S E, Heinen R, Huberty M, Steinauer K, De Long J R, Jongen R, Bezemer T M. 2021. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications12, 5686.

Hernandez D J, David A S, Menges E S, Searcy C A, Afkhami M E. 2021. Environmental stress destabilizes microbial networks. The ISME Journal15, 1722–1734.

Huse S M, Dethlefsen L, Huber J A, Welch D M, Relman D A, Sogin M L. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics4, e1000255.

Iheshiulo E M A, Larney F J, Hernandez-Ramirez G, St Luce M, Liu K, Chau H W. 2023. Do diversified crop rotations influence soil physical health? A meta-analysis. Soil and Tillage Research233, 105781.

IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.

Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang F S. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America106, 3041–3046.

Kalburtji K L, Mamolos A P. 2000. Maize, soybean and sunflower litter dynamics in two physicochemically different soils. Nutrient Cycling in Agroecosystems57, 195–206.

Kavamura V N, Mendes R, Bargaz A, Mauchline T H. 2021. Defining the wheat microbiome: Towards microbiome-facilitated crop production. Computational and Structural Biotechnology Journal19, 1200–1213.

Langfelder P, Horvath S. 2008. Wgcna: An R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

Li G, Niu W, Ma L, Du Y, Zhang Q, Sun J, Siddique K H M. 2023. Legacy effects of wheat season organic fertilizer addition on microbial co-occurrence networks, soil function, and yield of the subsequent maize season in a Wheat–maize rotation system. Journal of Environmental Management347, 119160.

Li H, Zhang Y, Yang S, Wang Z, Feng X, Liu H, Jiang Y. 2019. Variations in soil bacterial taxonomic profiles and putative functions in response to straw incorporation combined with N fertilization during the maize growing season. AgricultureEcosystems & Environment283, 106578.

Li T, Li Y, Shi Z, Wang S, Liao Y. 2021. Crop development has more influence on shaping rhizobacteria of wheat than tillage practice and crop rotation pattern in an arid agroecosystem. Applied Soil Ecology165, 104016.

Li T, Xie H, Ren Z, Hou Y, Zhao D, Wang W, Wang Z, Liu Y, Wen X, Han J, Mo F, Liao Y. 2023. Soil tillage rather than crop rotation determines assembly of the wheat rhizobacterial communities. Soil and Tillage Research226, 105588.

Liang H, Fu L B, Chen H, Zhou G P, Gao S J, Cao W D. 2023. Green manuring facilitates bacterial community dispersal across different compartments of subsequent tobacco. Journal of Integrative Agriculture22, 1199–1215.

Liaw A, Wiener M. 2002. Classification and regression by randomforest. R News2, 18–22.

Liu C, Feng X, Xu Y, Kumar A, Yan Z, Zhou J, Yang Y, Peixoto L, Zeng Z, Zang H. 2023. Legume-based rotation enhances subsequent wheat yield and maintains soil carbon storage. Agronomy for Sustainable Development43, 64.

Liu Z, Ying H, Chen M, Bai J, Xue Y, Yin Y, Batchelor W D, Yang Y, Bai Z, Du M, Guo Y, Zhang Q, Cui Z, Zhang F, Dou Z. 2021. Optimization of china’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints. Nature Food2, 426–433.

Louca S, Parfrey L W, Doebeli M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science353, 1272–1277.

Lozupone C, Lladser M E, Knights D, Stombaugh J, Knight R. 2011. Unifrac: An effective distance metric for microbial community comparison. The ISME Journal5, 169–172.

Luo W, Wang J, Li Y, Wang C, Yang S, Jiao S, Wei G, Chen W. 2022. Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities. Plant and Soil480, 439–455.

Lupwayi N, Fernandez M, Petri R, Brown A H, Kanashiro D. 2023. Alteration of the organic wheat rhizobiome and enzyme activities by reduced tillage and diversified crop rotation. European Journal of Agronomy144, 126726.

Mendes L W, Kuramae E E, Navarrete A A, van Veen J A, Tsai S M. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal8, 1577–1587.

Mhlongo M I, Piater L A, Madala N E, Labuschagne N, Dubery I A. 2018. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in Plant Science9, 112.

Nannipieri P, Hannula S E, Pietramellara G, Schloter M, Sizmur T, Pathan S I. 2023. Legacy effects of rhizodeposits on soil microbiomes: A perspective. Soil Biology and Biochemistry184, 109107.

NBSC (National Bureau of Statistics of China). 2020. China Statistical Yearbook. China Statistics Press, Beijing. (in Chinese)

Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Szöcs E, Wagner H. 2018. Vegan: Community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R package version 2.5–7.

Peng J, Chen C, Xiong C, Li S, Ge A, Wang E, Liesack W. 2023. Harnessing biological nitrogen fixation in plant leaves. Trends in Plant Science28, 1391–1405.

Quiza L, Tremblay J, Pagé A P, Greer C W, Pozniak C J, Li R, Haug B, Hemmingsen S M, St-Arnaud M, Yergeau E. 2023. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME Communications3, 32.

Reinhold-Hurek B, Bünger W, Burbano C S, Sabale M, Hurek T. 2015. Roots shaping their microbiome: Global hotspots for microbial activity. Annual Review of Phytopathology53, 403–424.

Rezgui C, Trinsoutrot-Gattin I, Benoit M, Laval K, Riah-Anglet W. 2021. Linking changes in the soil microbial community to C and N dynamics during crop residue decomposition. Journal of Integrative Agriculture20, 3039–3059.

Robinson M D, McCarthy D J, Smyth G K. 2010. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140.

Shi Z, Liu D, Liu M, Hafeez M B, Wen P, Wang X, Wang R, Zhang X, Li J. 2021. Optimized fertilizer recommendation method for nitrate residue control in a wheat–maize double cropping system in dryland farming. Field Crops Research271, 108258.

Stegen J C, Fredrickson J K, Wilkins M J, Konopka A E, Nelson W C, Arntzen E V, Chrisler W B, Chu R K, Danczak R E, Fansler S J, Kennedy D W, Resch C T, Tfaily M. 2016. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communications7, 11237.

Sun A, Jiao X Y, Chen Q, Wu A L, Zheng Y, Lin Y X, He J Z, Hu H W. 2021. Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology and Biochemistry153, 108113.

Trivedi P, Leach J E, Tringe S G, Sa T, Singh B K. 2020. Plant–microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology18, 607–621.

Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente R M. 2020. Root exudates: From plant to rhizosphere and beyond. Plant Cell Reports39, 3–17.

Wang P, Nie J, Yang L, Zhao J, Wang X, Zhang Y, Zang H, Yang Y, Zeng Z. 2023. Plant growth stages covered the legacy effect of rotation systems on microbial community structure and function in wheat rhizosphere. Environmental Science and Pollution Research30, 59632–59644.

Wang Y, Liu L, Yang J, Duan Y, Luo Y, Taherzadeh M J, Li Y, Li H, Awasthi M K, Zhao Z. 2020. The diversity of microbial community and function varied in response to different agricultural residues composting. Science of the Total Environment715, 136983.

Xie Z, Yu Z, Li Y, Wang G, Liu X, Tang C, Lian T, Adams J, Liu J, Liu J, Herbert S J, Jin J. 2022. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. NPJ Biofilms and Microbiomes8, 14.

Xiong C, Lu Y. 2022. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental Microbiology Reports14, 833–849.

Xiong C, Singh B K, He J Z, Han Y L, Li P P, Wan L H, Meng G Z, Liu S Y, Wang J T, Wu C F, Ge A H, Zhang L M. 2021a. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome9, 171.

Xiong C, Zhu Y G, Wang J T, Singh B, Han L L, Shen J P, Li P P, Wang G B, Wu C F, Ge A H, Zhang L M, He J Z. 2021b. Host selection shapes crop microbiome assembly and network complexity. New Phytologist229, 1091–1104.

Ye Z, Li J, Wang J, Zhang C, Liu G, Dong Q G. 2021. Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biology and Fertility of Soils57, 809–824.

Yin C, Hulbert S H, Schroeder K L, Mavrodi O, Mavrodi D, Dhingra A, Schillinger W F, Paulitz T C. 2013. Role of bacterial communities in the natural suppression of rhizoctonia solani bare patch disease of wheat (Triticum aestivum L.). Applied and Environmental Microbiology Journal79, 7428–7438.

Yu S, Wang T, Meng Y, Yao S, Wang L, Zheng H, Zhou Y, Song Z, Zhang B. 2022. Leguminous cover crops and soya increased soil fungal diversity and suppressed pathotrophs caused by continuous cereal cropping. Frontiers in Microbiology13, 993214.

Zhalnina K, Louie K B, Hao Z, Mansoori N, da Rocha U N, Shi S, Cho H, Karaoz U, Loqué D, Bowen B P, Firestone M K, Northen T R, Brodie E L. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology3, 470–480.

Zhang B, Zhang J, Liu Y, Shi P, Wei G. 2018. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry118, 178–186.

Zhang H, Luo G, Wang Y, Fei J, Xiangmin R, Peng J, Tian C, Zhang Y. 2023. Crop rotation-driven change in physicochemical properties regulates microbial diversity, dominant components, and community complexity in paddy soils. AgricultureEcosystems & Environment343, 108278.

Zhang J, Liu Y X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y. 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology37, 676–684.

Zhang L, Ge A H, Tóth T, An F, Guo L, Nie Z, Liu J, Yang F, Wang Z. 2021. Soil bacterial microbiota predetermines rice yield in reclaiming saline-sodic soils leached with brackish ice. Journal of the Science of Food and Agriculture101, 6472–6483.

[1] Hao Xi, Jing Zeng, Jiayao Han, Yali Zhang, Jianbin Pan, Qi Zhang, Huyuan Feng, Yongjun Liu. Host preferences of root-associated fungi and their responses to decadal nitrogen and fungicide applications in an alpine pasture ecosystem[J]. >Journal of Integrative Agriculture, 2025, 24(3): 885-899.
[2] Xiaotong Liu, Siwei Liang, Yijia Tian, Xiao Wang, Wenju Liang, Xiaoke Zhang. Effect of land use on soil nematode community composition and co-occurrence network relationship[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2807-2819.
[3] Sainan Geng, Lantao Li, Yuhong Miao, Yinjie Zhang, Xiaona Yu, Duo Zhang, Qirui Yang, Xiao Zhang, Yilun Wang. Nitrogen rhizodeposition from corn and soybean, and its contribution to the subsequent wheat crops[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2446-2457.
[4] Junming Liu, Zhuanyun Si, Shuang Li, Lifeng Wu, Yingying Zhang, Xiaolei Wu, Hui Cao, Yang Gao, Aiwang Duan. Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4018-4031.
[5] XING Ting-ting, CAI An-dong, LU Chang-ai, YE Hong-ling, WU Hong-liang, HUAI Sheng-chang, WANG Jin-yu, XU Ming-gang, LIN Qi-mei . Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1488-1500.
[6] LIU Hang, PAN Feng-juan, HAN Xiao-zeng, SONG Feng-bin, ZHANG Zhi-ming, YAN Jun, XU Yan-li. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops[J]. >Journal of Integrative Agriculture, 2020, 19(3): 866-880.
[7] GUO Qian-kun, LIU Bao-yuan, XIE Yun, LIU Ying-na, YIN Shui-qing. Estimation of USLE crop and management factor values for crop rotation systems in China[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1877-1888.
[8] TANG Qiu-xiang, Wilko Schweers, LEI Bao-kun, LIN Tao, ZHANG Gui-long . Study on Environmental Risk and Economic Benefits of Rotation Systems in Farmland of Erhai Lake Basin[J]. >Journal of Integrative Agriculture, 2012, 12(6): 1038-1047.
No Suggested Reading articles found!