Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3788-3800    DOI: 10.1016/j.jia.2024.01.009
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Autophagy-related protein PlAtg3 participates in vegetative growth, sporangial cleavage, autophagy and pathogenicity of Peronophythora litchii

Chengdong Yang1, 2, 3*, Manfei Luo1, 2*, Xue Zhang1, 2, Linlin Ye1, 2, Ge Yu1, 2, Yi Lü1, 2, Yi Chen1, 2, Taixu Chen1, 2, Xuejian Wang1, 2, Wanzhen Feng1, 2#, Qinghe Chen1, 2#

1 School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China

2 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China

3 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350013, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  由植物病原卵菌荔枝霜疫霉引起的荔枝霜疫病是荔枝上最具破坏性的病害之一,它的发生会给荔枝的生产带来巨大经济损失。研究表明,细胞自噬在病原真菌的生长发育和致病过程中发挥至关重要作用。然而,植物病原卵菌中有关细胞自噬的功能尚不清楚。为了探究细胞自噬在荔枝霜疫霉生长发育和致病过程中的作用。在本研究中通过生物信息学分析鉴定到了一个酵母自噬相关蛋白Atg3的同源蛋白,命名为PlAtg3。利用CRISPR/Cas9基因编辑技术对其敲除和原位回补发现PlATG3的缺失削弱了荔枝霜疫霉的营养生长和有性/无性发育。通过特异性自噬体染料单丹黄酰戊二胺(monodansylcadaverineMDC)对自噬体染色发现,PlATG3突变体中自噬体数量明显低于野生型菌株。FM4-64染料对细胞膜染色发现PlATG3的缺失影响了孢子囊细胞质割裂而导致游动孢子释放率显著降低。Atg8被认为是各种物种中的自噬标记蛋白。Western blot分析显示PlAtg8-PEPlATG3突变体中的积累较野生型增多,表明PlAtg3参与了PlAtg8-PE的降解。但是与酵母中ScAtg3能与ScAtg8互作相比,酵母双杂交yeast two hybridY2H结果显示荔枝霜疫霉中PlAtg3无法与PlAtg8互作,可能是由于PlAtg3中缺乏Atg8家族相互作用基序(Atg8 family interacting motifAIM)。此外,致病性实验表明PlATG3的缺失显著降低了荔枝霜疫霉对荔枝叶片和果实致病力。综上所述,我们的数据揭示了PlAtg3荔枝霜疫霉菌丝生长、有性/无性发育、孢割裂和游动孢子释放、自噬体形成和致病过程发挥至关重要作用。这项研究有助于更好地理解荔枝霜疫霉的致病机制,并为开发更有效的控制卵菌类病害的策略提供见解

Abstract  
Litchi downy blight, caused by the plant pathogenic oomycete Peronophythora litchii, is one of the most devastating diseases on litchi and resulted in huge economic losses.  Autophagy plays an essential role in the development and pathogenicity of the filamentous fungi.  However, the function of autophagy in oomycetes remain elusive.  Here, an autophagy-related protein Atg3 homolog PlAtg3 was identified and characterized in Plitchii.  The absence of PlATG3 through the CRISPR/Cas9 gene replacement strategy compromised vegetative growth and sexual/asexual development.  Cytological analyses revealed that the deletion of PlATG3 impaired autophagosome formation with monodansylcadaverine (MDC) staining and significantly disrupted zoospore release due to defects of sporangial cleavage with FM4-64 staining.  Atg8 is considered to be an autophagy marker protein in various species.  Western blot analysis indicated that PlAtg3 is involved in degradation of PlAtg8-PE.  Interestingly, PlAtg3 was unable to interact with PlAtg8 in yeast two hybrid (Y2H) assays, possibly due to the absence of the Atg8 family interacting motif (AIM) in PlAtg3.  Furthermore, pathogenicity assays revealed that the deletion of PlATG3 considerably reduced the virulence of Plitchii.  Taken together, our data reveal that PlAtg3 plays an important role in radial growth, asexual/sexual development, sporangial cleavage and zoospore release, autophagosome formation, and pathogenicity in Plitchii.  This study contributes to a better understanding of the pathogenicity mechanisms of Plitchii and provides insights for the development of more effective strategies to control oomycete diseases.


Keywords:  PlAtg3       sporangial cleavage       autophagy       pathogenicity       Peronophythora litchii  
Received: 25 September 2023   Accepted: 09 November 2023
Fund: This work was supported by the grants from the Hainan Provincial Natural Science Foundation, China (321QN190 and 321CXTD437), the National Natural Science Foundation of China (32202246 and 32160614), the Open Project Program of Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, China (MIMCP-202102), and the Scientific Research Foundation of Hainan University, China (KYQD(ZR)-21042 and KYQD(ZR)-20080).

About author:  Chengdong Yang, E-mail: Chengdy@hainanu.edu.cn; #Correspondence Qinghe Chen, E-mail: qhchen@hainanu.edu.cn; Wanzhen Feng, E-mail: fwz@hainanu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Chengdong Yang, Manfei Luo, Xue Zhang, Linlin Ye, Ge Yu, Yi Lü, Yi Chen, Taixu Chen, Xuejian Wang, Wanzhen Feng, Qinghe Chen. 2024. Autophagy-related protein PlAtg3 participates in vegetative growth, sporangial cleavage, autophagy and pathogenicity of Peronophythora litchii. Journal of Integrative Agriculture, 23(11): 3788-3800.

Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takanoa Y. 2009. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculareThe Plant Cell211291–1304.

Blanco F A, Judelson H S. 2005. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Molecular Microbiology56638–648.

Chen L, Zhang X, Wang W, Geng X J, Shi Y, Na R, Dou D L, Li H L. 2017. Network and role analysis of autophagy in Phytophthora sojaeScientific Reports71879.

Fang Y F, Cui L K, Gu B, Arredondo F, Tyler B M. 2017. Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9. Current Protocols in Microbiology44, 21A.1.1–21A.1.26.

Farré J C, Subramani S. 2016. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nature Reviews Molecular Cell Biology, 17537–552.

Fukuda T, Furukawa K, Maruyama T, Noda N N, Kanki T. 2023a. Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy. Autophagy193019–3021.

Fukuda T, Furukawa K, Maruyama T, Yamashita S I, Noshiro D, Song C, Ogasawara Y, Okuyama K, Alam J M, Hayatsu M, Saigusa T, Inoue K, Ikeda K, Takai A, Chen L, Lahiri V, Okada Y, Shibata S, Murata K, Klionsky D J, et al. 2023b. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Molecular Cell83, 2045–2058.e9.

Fukuda T, Kanki T. 2021. Atg43, a novel autophagy-related protein, serves as a mitophagy receptor to bridge mitochondria with phagophores in fission yeast. Autophagy17, 826–827.

Guan B, Xue H. 2022. Arabidopsis autophagy-related 3 (ATG3) facilitates the liquid–liquid phase separation of ATG8e to promote autophagy. Science Bulletin67, 350–354.

Han S, Wang Y, Zheng X, Jia Q, Zhao J, Bai F, Hong Y, Liu Y. 2015. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamianaThe Plant Cell27, 1316–1331.

Hanada T, Satomi Y, Takao T, Ohsumi Y. 2009. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. Federation of European Biochemical Societies Letters583, 1078–1083.

Hardham A R. 2007. Cell biology of plant–oomycete interactions. Cell Microbiology9, 31–39.

Huang J M, Xi P G, Deng Y Z, Huang W X, Wang J R, Zhao Q QYang W S, Li W, Situ J J, Jiang L Q, Guan T F, Li M H, Jiang Z D, Kong G H. 2021. The mitogen-activated protein kinase PlMAPK2 iinvolved in zoosporogenesis and pathogenicity of Peronophythora litchiiInternational Journal of Molecular Sciences22, 3524.

Hurley J H, Schulman B A. 2014. Atomistic autophagy: The structures of cellular self-digestion. Cell157, 300–311.

Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. 2000. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492.

Jiang Y M, Wang Y, Song L, Liu H, Lichter A, Kerdchoechuen O, Joyce D C, Shi J. 2006. Postharvest characteristics and handling of litchi fruit - an overview. Australian Journal of Experimental Agriculture46, 1541–1556.

Judelson H S, Blanco F A. 2005. The spores of Phytophthora: Weapons of the plant destroyer. Nature Reviews Microbiology3, 47–58.

Kao C W, Leu L S. 1980. Sporangium germination of Peronophythora litchii, the causal organism of litchi downy blight. Mycologia72, 737–748.

Kershaw M J, Talbot N J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. The Proceedings of the National Academy of Sciences of the United States of America106, 15967–15972.

Khalid A R, Lv X L, Naeem M, Mehmood K, Shaheen H, Dong PQiu D, Ren M Z. 2019. Autophagy related gene (ATG3) is a key regulator for cell growth, development, and virulence of Fusarium oxysporumGenes10, 658.

Kikuma T, Kitamoto K. 2011. Analysis of autophagy in Aspergillus oryzae by disruption of AoATG13AoATG4, and AoATG15 genes. Federation of European Microbiological Societies Microbiology Letters316, 61–69.

Kikuma T, Ohneda M, Arioka M, Kitamoto K. 2006. Functional analysis of the Atg8 homologue AoAtg8 and role of autophagy in differentiation and germination in Aspergillus oryzaeEukaryotic Cell5, 1328–1336.

Laboratories C. 2007. Matchmaker Gal4 Two-Hybrid System 3 & Libraries User Manual. [2007-4-3]. http://www.clontech.com/images/pt/PT3247-1.PDF

Li Y T, Yi C, Chen C C, Lan H, Pan M, Zhang S J, Huang Y C, Guan C J, Li Y M, Yu L, Liu L. 2017. A semisynthetic Atg3 reveals that acetylation promotes Atg3 membrane binding and Atg8 lipidation. Nature Communications8, 14846.

Lin L, Ye W W, Wu J W, Xuan M R, Li Y F, Gao J, Wang Y L, Wang Y, Dong S M, Wang Y C. 2018. The MADS-box transcription factor PsMAD1 iinvolved in zoosporogenesis and pathogenesis of Phytophthora sojaeFrontiers in Microbiology9, 2259.

Liu D D, Li Z X, Hou M L. 2022. Silencing the autophagy-related genes ATG3 and ATG9 promotes SRBSDV propagation and transmission in Sogatella furciferaInsects13, 394.

Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell121, 567–577.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Luo Q, Wang F X, Zhong N Q, Wang H Y, Xia G X. 2014. The role of autophagy during development of the oomycete pathogen Phytophthora infestansJouanal of Genetics Genomics41, 225–228.

Lv W Y, Wang C Y, Yang N, Que Y W, Talbot N J, Wang Z Y. 2017. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearumScientific Reports7, 11062.

Meng S, Xiong M, Jagernath J S, Wang C C, Qiu J H, Shi H B, Kou Y J. 2020. UvAtg8-mediated autophagy regulates fungal growth, stress responses, conidiation, and pathogenesis in Ustilaginoidea virensRice, 1356.

Mizushima N, Komatsu M. 2011. Autophagy: Renovation of cells and tissues. Cell147, 728–741.

Murrow L, Debnath J. 2018. Atg12–Atg3 coordinates basal autophagy, endolysosomal trafficking, and exosome release. Molecular & Cellular Oncology5e1039191.

Murrow L, Malhotra R, Debnath J. 2015. ATG12–ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nature Cell Biology17, 300–310.

Nadal M, Gold S E. 2010. The autophagy genes ATG8 and ATG1 affect morphogenesis and pathogenicity in Ustilago maydisMolecular Plant Pathology, 11, 463–478.

Nair U, Yen W L, Mari M, Cao Y, Xie Z P, Baba M, Reggiori F, Klionsky D J. 2012. A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy8, 780–793.

Pollack J K, Harris S D, Marten M R. 2009. Autophagy in filamentous fungi. Fungal Genetics and Biology46, 1–8.

Popelka H, Klionsky D J. 2021. Multiple structural rearrangements mediated by high-plasticity regions in Atg3 are key for efficient conjugation of Atg8 to PE during autophagy. Autophagy17, 1805–1808.

Qiu M, Li Y, Ye W W, Zheng X B, Wang Y C. 2021. A CRISPR/Cas9-mediated in situ complementation method for Phytophthora sojae mutants. Molecular Plant Pathology22, 373–381.

Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath. J. 2010. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell142, 590–600.

Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J, Noda N N, Inagaki F, Nakatogawa H, Ohsumi Y. 2013. Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nature Structural & Molecular Biology20, 433–439.

Sun J H, Gao Z Y, Zhang X C, Zou X X, Cao L L, Wang J B. 2017. Transcriptome analysis of Phytophthora litchii reveals pathogenicity arsenals and confirms taxonomic status. PLoS ONE12, e0178245.

Suzuki K, Ohsumi Y. 2010. Current knowledge of the pre-autophagosomal structure (PAS). Federation of European Biochemical Societies Letters584, 1280–1286.

Talibi I, Boubaker H, Boudyach E H, Ben Aoumar A A. 2014. Alternative methods for the control of postharvest citrus diseases. Journal of Applied Microbiology117, 1–17.

Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E. 2002. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. Journal of Biological Chemistry277, 13739–13744.

Tyler B M. 2007. Phytophthora sojae: Root rot pathogen of soybean and model oomycete. Molecular Plant Pathology8, 1–8.

Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot N J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science312, 580–583.

Voigt O, Poggeler S. 2013. Autophagy genes SmATG8 and SmATG4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrosporaAutophagy9, 33–49.

Wang H C, Sun H Y, Stammler G, Ma J X, Zhou M G. 2009. Baseline and differential sensitivity of Peronophythora litchii (lychee downy blight) to three carboxylic acid amide fungicides. Plant Pathology58, 571–576.

Wang J R, Zhou G Q, Huang W X, Li W, Feng D L, Liu L C, Xi P G, Jiang Z D, Kong G H. 2022. Autophagy-related gene PlATG6a iinvolved in mycelial growth, asexual reproduction and tolerance to salt and oxidative stresses in Peronophythora litchiiInternational Journal of Molecular Sciences23, 1839.

Wang S, Li Y, Ma C. 2020. Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement. Protein Science29, 1511–1523.

Wei Y Z, Zhang H N, Li W C, Xie J H, Wang Y C, Liu L Q, Shi S Y. 2013. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Scientia Horticulturae161, 273–277.

Xu L X, Xue J H, Wu P, Wang D D, Lin L J, Jiang Y MDuan X W, Wei X Y. 2013. Antifungal activity of hypothemycin against Peronophythora Litchii ivitro and ivivoJournal of Agricultural and Food Chemistry61, 10091–10095.

Yamada Y, Suzuki N N, Hanada T, Ichimura Y, Kumeta H, Fujioka Y, Ohsumi Y, Inagaki F. 2007. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. Journal of Biological Chemistry282, 8036–8043.

Yamaguchi M, Noda N N, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. 2010. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and icrucial for the cytoplasm-to-vacuole targeting pathway. Journal of Biological Chemistry285, 29599–29607.

Ye C L, Feng Y L, Yu F F, Jiao Q Q, Wu J G, Ye Z H, Zhang P J, Sun C X, Pang K, Hao P Y, Yu X P. 2021. RNAimediated silencing of the autophagyrelated gene NlATG3 inhibits survival and fecundity of the brown planthopper, Nilaparvata lugensPest Management Science77, 4658–4668.

Yi C, Ma M S, Ran L L, Zheng J X, Tong J J, Zhu J, Ma C Y, Sun Y F, Zhang S J, Feng W Z, Zhu L Y, Le Y, Gong X Q, Yan X H, Hong B, Jiang F J, Xie Z P, Miao D, Deng H T, Yu L. 2012. Function and molecular mechanism of acetylation in autophagy regulation. Science336, 474–477.

Yu G, Li W Q, Yang C D,Zhang X, Luo M F, Chen T X, Wang X J, Wang R B, Chen Q H. 2024. PlAtg8-mediated autophagy regulates vegetative growth, sporangial cleavage, and pathogenesis in Peronophythora litchiiMicrobiology Spectrum12, e0353123.

Yue J Y, Wang Y J, Jiao J L, Wang H Z. 2021. Silencing of ATG2 and ATG7 promotes programmed cell death in wheat via inhibition of autophagy under salt stress. Ecotoxicology Environmental Safety225, 112761.

Zhao X R, Feng W J, Zhu X Y, Li C X, Ma X Y, Li X, Zhu X D, Wei D S. 2019. Conserved autophagy pathway contributes to stress tolerance and virulence and differentially controls autophagic flux upon nutrient starvation in Cryptococcus neoformansFrontiers in Microbiology10, 2690.

[1] Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding. Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3055-3065.
[2] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[3] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[4] Yue Jiang, Rong Wang, Lili Du, Xueyu Wang, Xi Zhang, Pengfei Qi, Qianfei Wu, Baoyi Peng, Zonghua Wang, Mo Wang, Ya Li.

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1956-1966.

[5] Linlin Chen, Yixuan Shan, Zaifang Dong, Yake Zhang, Mengya Peng, Hongxia Yuan, Yan Shi, Honglian Li, Xiaoping Xing. A potential hyphal fusion protein complex with an important role in development and virulence interacts with autophagy-related proteins in Fusarium pseudograminearum[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4093-4106.
[6] Yina Xu, Hailing Li, Haoyu Leng, Chaofan Su, Siqi Tang, Yongtao Wang, Shiwei Zhang, Yali Feng, Yanan Wu, Daxin Wang, Ying Zhang. Genetic and biological properties of H10Nx influenza viruses in China[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3860-3869.
[7] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[8] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[9] MENG Ya-nan, ZHANG Xin-jie, ZENG Fan-li, ZHAI Wei-bo, LI Pan, HU Jing-jing, XIAO Sheng-lin, HAO Zhi-min, CAO Zhi-yan, CHEN Chuan, DONG Jin-gao.

Transcriptional regulation of secondary metabolism and autophagy genes in response to DNA replication stress in Setosphaeria turcica [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1068-1081.

[10] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

[11] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[12] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
[13] ZHANG Xing-zhi, CHEN Shuang, Yakubu Saddeeq ABUBAKAR, MAO Xu-zhao, MIAO Peng-fei, WANG Zong-hua, ZHOU Jie, ZHENG Hua-wei. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3444-3457.
[14] YANG Si-hua, ZHAO Li-rong, DING Sha, TANG Shi-qiao, CHEN Chun, ZHANG Huan-xin, XU Chun-ling, XIE Hui. Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2652-2664.
[15] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
No Suggested Reading articles found!