Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (7): 2126-2137    DOI: 10.1016/j.jia.2022.10.006
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus
ZHANG Hao-yang1, YANG Yan-fang1, GUO Feng2, SHEN Xiao-rui2, LU Shan1, 2, 3#, CHEN Bao-shan1, 2, 3#
1 College of Agriculture/Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, P.R.China
2 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Science and Technology,
Guangxi University, Nanning 530004, P.R.China
3 Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi University,
Nanning 530004, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【目的】甘蔗鞭黑粉菌引起的甘蔗黑穗病是甘蔗上最严重的系统性真菌病害,对全球甘蔗生产造成严重的损失。然而,该病原菌的致病机制在很大程度上仍然未知,对甘蔗鞭黑粉菌致病性调控机制的研究将有助于开发新的病害防治策略。【方法】利用农杆菌T-DNA介导的CRISPR-Cas9基因插入突变及回补系统分别在甘蔗鞭黑粉菌两个不同的交配型担孢子中构建水杨酸感知调节因子SsRss1的敲除株和回补株。通过对细胞表型观察、生长速度、压力应激、水杨酸耐受性、有性配合以及致病的检测,明确SsRSS1基因在甘蔗鞭黑粉菌重要生物过程中的功能。【结果】SsRss1是一个具有保守锌簇DNA结合结构域的GAL4样转录因子,受水杨酸诱导表达;敲除SsRss1编码基因SsRSS1不影响甘蔗鞭黑粉菌单倍体担孢子的细胞形态、体外生长速率及有性配合能力,但降低了单倍体担孢子对水杨酸的耐受力;SsRSS1缺失突变体对甘蔗的侵染率下降约40%,受侵染植株的黑鞭症状形成时间延迟或植未能形成黑鞭;SsRSS1基因缺失不影响植株体内菌丝的形态及冬孢子的形成与萌发。【结论】甘蔗鞭黑粉菌SsRss1参与病原菌对水杨酸的响应并对水杨酸的耐受性和致病性有明显贡献。【创新性】本研究首次报道了甘蔗鞭黑粉菌转录因子SsRss1在致病性调控方面的作用及机制,加深了该病原菌与甘蔗互作机理的认识



Abstract  Sugarcane smut caused by Sporisorium scitamineum is a destructive disease responsible for significant losses in sugarcane production worldwide. However, the mechanisms underlying the pathogenicity of this fungus remain largely unknown. In this study, we found that the disruption of the SsRSS1 gene, which encodes a salicylic acid (SA) sensing regulator, does not affect phenotypic traits such as the morphology, growth rate, and sexual mating ability of haploid basidiospores, but rather reduces the tolerance of basidiospores to SA stress by blocking the induction of SsSRG1, a gene encoding a SA response protein in S. scitamineum. SsRSS1 deletion resulted in the attenuation of the virulence of the fungus. In addition to a significant reduction in whip formation, a portion of plantlets (18.3%) inoculated with the ΔSsRSS1 strains were found to be infected but failed to produce whips for up to 90 days post-inoculation. However, the development of hyphae and teliospore from the ΔSsRSS1-infected plants that formed whips seemed indistinguishable from that in the wild-type-infected plants. Combined, our findings suggested that SsRss1 is required for maintaining fungal fitness in planta by counteracting SA stress.
Keywords:  Sporisorium scitamineum        SsRSS1        pathogenicity        salicylic acid respons
  
Received: 24 June 2022   Accepted: 05 September 2022
Fund: This study was supported by the grants from the National Natural Science Foundation of China (31872635), the Guangxi Key Laboratory of Sugarcane Biology, China (2018-266-Z01), and the Department of Science and Technology of Guangxi Zhuang Autonomous Region, China (AD17129002).
About author:  ZHANG Hao-yang, E-mail: 1817304024@st.gxu.edu.cn; #Correspondence CHEN Bao-shan, Tel: +86-771-3225260, E-mail: chenyaoj@gxu.edu.cn; LU Shan, Tel: +86-771-3394554, E-mail: lushan@gxu.edu.cn

Cite this article: 

ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. 2023. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus. Journal of Integrative Agriculture, 22(7): 2126-2137.

An C, Mou Z. 2011. Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology53, 412–428.

Anderson S F, Steber C M, Esposito R E, Coleman J E. 1995. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner. Protein Science4, 1832–1843.

Brachmann A, Weinzierl G, Kamper J, Kahmann R. 2001. Identification of genes in the bW/bE regulatory cascade in Ustilago maydisMolecular Microbiology42, 1047–1063.

Chang C, Cai E, Deng Y Z, Mei D, Qiu S, Chen, B, Zhang L, Jiang Z. 2019. cAMP/PKA signalling pathway regulates redox homeostasis essential for Sporisorium scitamineum mating/filamentation and virulence. Environmental Microbiology21, 959–971.

Coquoz J L, Buchala A, Metraux J P. 1998. The biosynthesis of salicylic acid in potato plants. Plant Physiology117, 1095–1101.

Deng Y Z, Zhang B, Chang C, Wang Y, Lu S, Sun S, Zhang X, Chen B, Jiang Z. 2018. The MAP kinase SsKpp2 is required for mating/filamentation in Sporisorium scitamineumFrontiers in Microbiology9, 2555.

Ding P, Ding Y. 2020. Stories of salicylic acid: A plant defense hormone. Trends in Plant Science25, 549–565.

Doehlemann G, Wahl R, Horst R J, Voll L M, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, Kämper J. 2008. Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydisThe Plant Journal56, 181–195.

Gao Y, Zhou S, Huang Y, Zhang B, Xu Y, Zhang G, Lakshmanan P, Yang R, Zhou H, Huang D, Liu J, Tan H, He W, Yang C, Duan W. 2021. Quantitative trait loci mapping and development of KASP marker smut screening assay using high-density genetic map and bulked segregant RNA sequencing in sugarcane (Saccharum spp.). Frontiers in Plant Science12, 796189.

Goldar M M, Jeong H T, Tanaka K, Matsuda H, Kawamukai M. 2005. Moc3, a novel Zn finger type protein involved in sexual development, ascus formation, and stress response of Schizosaccharomyces pombeCurrent Genetics48, 345–355.

Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogens8, e1002684.

Hou S, Tsuda K. 2022. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry66, 647–656.

Janda T, Szalai G, Pal M. 2020. Salicylic acid signalling in plants. International Journal of Molecular Sciences21, 2655.

Lefevere H, Bauters L, Gheysen G. 2020. Salicylic acid biosynthesis in plants. Frontiers in Plant Science11, 338.

Lu S, Guo F, Wang Z, Shen X, Deng Y, Meng J, Jiang Z, Chen B. 2021a. Genetic dissection of T-DNA insertional mutants reveals uncoupling of dikaryotic filamentation and virulence in sugarcane smut fungus. Phytopathology111, 2303–2308.

Lu S, Shen X, Chen B. 2017. Development of an efficient vector system for gene knock-out and near in-cis gene complementation in the sugarcane smut fungus. Scientific Reports7, 3113.

Lu S, Wang Y, Shen X, Guo F, Zhou C, Li R, Chen B. 2021b. SsPEP1, an effector with essential cellular functions in sugarcane smut fungus. Journal of Fungi (Basel), 7, 954.

Maia T, Rody H V S, Bombardelli R G H, Souto T G, Camargo L E A, Monteiro-Vitorello C B. 2022. A bacterial type three secretion-based delivery system for functional characterization of Sporisorium scitamineum plant immune suppressing effector proteins. Phytopathology112, 1513–1523.

Main G D, Reynolds S, Gartland J S. 1995. Electroporation protocols for AgrobacteriumMethods in Molecular Biology44, 405–412.

McMartin A. 1945. Sugar-cane smut reappearance in Natal. South African Sugar Journal29, 55–57.

Pan T, Coleman J E. 1990. GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster. Proceedings of the National Academy of Scieces of the United States of America87, 2077–2081.

Rabe F, Seitner D, Bauer L, Navarrete F, Czedik-Eysenberg A, Rabanal F A, Djamei A. 2016. Phytohormone sensing in the biotrophic fungus Ustilago maydis - the dual role of the transcription factor Rss1. Molecular Microbiology102, 290–305.

Rajput M A, Rajput N A, Syed R N, Lodhi A M, Que Y. 2021. Sugarcane smut: Current knowledge and the way forward for management. Journal of Fungi7, 1095.

Saleem M, Fariduddin Q, Castroverde C D M. 2021. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiology and Biochemistry168, 381–397.

Sun L, Yan M, Ding Z, Liu Y, Du M, Xi P, Liao J, Ji L, Jiang Z. 2014. Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitamineaBiotechnology Letters36, 1309–1314.

Sun S, Deng Y, Cai E, Yan M, Li L, Chen B, Chang C, Jiang Z. 2019. The farnesyltransferase beta-subunit Ram1 regulates Sporisorium scitamineum mating, pathogenicity and cell wall integrity. Frontiers in Microbiology10, 976.

Taniguti L M, Schaker P D C, Benevenuto J, Peters L P, Carvalho G, Palhares A, Quecine M C, Nunes F R S, Kmit M C P, Wai A, Hausner G, Aitken K S, Berkman P J, Fraser J A, Moolhuijzen P M, Coutinho L L, Creste S, Vieira M L C, Kitajima J P, Monteiro-Vitorello C B. 2015. Complete genome sequence of Sporisorium scitamineum and biotrophic interaction transcriptome with sugarcane. PLoS ONE10, e0129318.

Todd R B, Andrianopoulos A. 1997. Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genetics and Biology21, 388–405.

Wang Y, Deng Y Z, Cui G, Huang C, Zhang B, Chang C, Jiang Z, Zhang L. 2019. The AGC kinase SsAgc1 regulates Sporisorium scitamineum mating/filamentation and pathogenicity. mSphere4, e00259–e00278.

Yan M, Dai W, Cai E, Deng Y Z, Chang C, Jiang Z, Zhang L H. 2016. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics17, 354.

Zhang B, Cui G, Chang C, Wang Y, Zhang H, Chen B, Deng Y, Jiang Z. 2019. The autophagy gene ATG8 affects morphogenesis and oxidative stress tolerance in Sporisorium scitamineumJournal of Integrative Agriculture18, 1024.

Zhu G, Deng Y, Cai E, Yan M, Cui G, Wang Z, Zou C, Zhang B, Xi P, Chang C, Chen B, Jiang Z. 2019. Identification and functional analysis of the pheromone response factor gene of Sporisorium scitamineumFrontiers in Microbiology10, 2115.

No related articles found!
No Suggested Reading articles found!