Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (9): 2652-2664    DOI: 10.1016/j.jia.2022.07.021
Special Issue: 线虫合辑Nematology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host

YANG Si-hua1*, ZHAO Li-rong2*, DING Sha3, TANG Shi-qiao1, CHEN Chun1, ZHANG Huan-xin1, XU Chun-ling1, XIE Hui1

1 Research Center of Nematodes of Plant Quarantine, Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R.China

2 Technology Center, Guangzhou Customs District, People's Republic of China, Guangzhou 510623, P.R.China

3 Comprehensive Technology and Service Center of Huizhou Port Customs, Huizhou 516080, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

本研究通过室内试管石英砂培养的方法,测试香蕉穿孔线虫对本氏烟草的侵染致病过程和规律,明确了香蕉穿孔线虫侵染本氏烟草根系主要在根系皮层寄生,导致皮层细胞分解、组织腐烂。通过采用不同致病型和不同寄主来源的香蕉穿孔线虫群体对本氏烟草侵染致病的接种条件进行测定,以及对发病植株的症状表现、受害严重度和线虫繁殖率等致病性相关因子的评估,确定了香蕉穿孔线虫与本氏烟草互作研究的最佳测试条件和结果评估标准,从而建立了本氏烟草作为寄主的香蕉穿孔线虫致病性测定方法:(1)在玻璃培养试管中装入约占高度1/3 干燥的石英砂并灭菌两次;(2)将20天苗龄的本氏烟草幼苗移栽到试管中,在25±1℃条件下培养定植10 天;(3)以150条/株的接种虫量将香蕉穿孔线虫的雌虫接种到烟草根际;(4)在接种线虫30天后检测植株发病严重度、生长量和线虫繁殖量。本研究还采用该方法对致病型和寄主来源不同的8个香蕉穿孔线虫种群的致病性强弱进行了测定,证明了该方法的可行性。本研究结果为将本氏烟草作为香蕉穿孔线虫与植物互作研究的模式植物提供了依据和方法,为香蕉穿孔线虫致病性及其与寄主互作分子机制研究提供了新途径,对利用本氏烟草作为模式寄主研究香蕉穿孔线虫的致病机制和防治方法具有重要意义。


Radopholus similis (Cobb 1893) Thorne (1949) is a destructive migratory endoparasitic plant nematode.  In this study, the pathogenic process of Rsimilis infection in Nicotiana benthamiana (tobacco) was studied using quartz sand culture in laboratory.  The results showed that Rsimilis mainly parasitised the root cortex, leading to cortical cell decomposition and tissue decay.  We optimised the inoculation conditions to establish a method for determining the pathogenicity of Rsimilis as follows: (1) a glass culture tube was filled with quartz sand (about 1/3 of the height) and sterilised twice; (2) 20-day-old Nbenthamiana seedlings were transplanted into test tubes and cultivated for 10 days at (25±1)°C; (3) Rsimilis female nematodes were inoculated in the root rhizosphere at a rate of 150 nematodes per plant; (4) the number of nematodes, disease severity, and growth of the plant at 30 days post-inoculation (dpi) were determined.  The pathogenicity of eight Rsimilis populations from different hosts was determined, which proved the feasibility of this method.

Keywords:  Radopholus similis       Nicotiana benthamiana       populations       pathogenicity   
Received: 11 October 2021   Accepted: 17 November 2021

This work was supported by the Natural Science Foundation of Guangdong Province, China (2021A1515011273) and the National Natural Science Foundation of China (31071665).  

About author:  Received 11 October, 2021 Accepted 17 November, 2021 Correspondence XIE Hui, E-mail:; XU Chun-ling, E-mail: * These authors contributed equally to this study.

Cite this article: 

YANG Si-hua, ZHAO Li-rong, DING Sha, TANG Shi-qiao, CHEN Chun, ZHANG Huan-xin, XU Chun-ling, XIE Hui. 2022. Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host. Journal of Integrative Agriculture, 21(9): 2652-2664.

Barekye A, Kashaija I N, Adipala E, Tushemereirwe W K. 1999. Pathogenicity of Radopholus similis and Helicotylenchus multicinctus on bananas in Uganda. In: Frison E A, Gold C S, Karamura E B, Sikora R A, eds., Mobilizing IPM for Sustainable Banana Production in Africa. International Network for the Improvement of Banana and Plantain, Montpellier. pp. 319–326.  
Bennett M D, Leitch I J. 1995. Nuclear DNA amounts in angiosperms. Annals of Botany, 76, 113–176.
Blake C D. 1966. The histological changes in banana roots caused by Radopholus similis and Helicotylenchus multicinctus. Nematologica, 12, 129–137.
Bombarely A, Rosli H G, Vrebalov J, Moffet P, Mueller L A, Martin G B. 2012. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Molecular Plant–Microbe Interactions, 25, 1523–1530.
Cesarz S, Schulz A E, Beugnon R, Eisenhauer N. 2019. Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Organisms, 91, 61–72. 
Chen C, Pei Y Y, Xie H, Mu R L. 2009. Ontogeny of Radopholus similis population from import Anthurium andraeanum. Journal of South China Agricultural University, 30, 40–42. (in Chinese)
Ding S, Xu C L, Xie H, Li J, Yu L, Zhang J F, Yuan Y. 2014. Screening of surface-sterilizing methods for Radopholus similis and their influences on its reproduction. Journal of Southwest University (Natural Science Edition), 36, 37–43. (in Chinese)
Duncan L W. 2005. Nematode parasites of citrus. In: Luc M, Sikora R A, Bridge J, eds., Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. 2nd ed. Commonwealth Agricultural Bureaux International, London.
Elbadri G A, De L P, Waeyenberge L, Vierstraete A, Moens M, Vanfletere J. 2002. Intraspecific variation in Radopholus similis isolates assessed with restriction fragment length polymorphism and DNA sequencing of the internal transcribed spacer region of the ribosomal RNA cistron. International Journal for Parasitology, 32, 199–205.
EMPPO (European and Mediterranean Plant Protection Organization). 2008. Diagnostics report, Radopholus similis. Bulletin OEPP/EPPO Bulletin, 3, 374–378.
Fatima N, Kenlee N, Crowhurst R N, Elena H, Zwart A B, Hellens R P, Taylor J M, Waterhouse P M, Wood C C. 2012. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE, 7, e52717.
Feng Z X. 2001. Plant Nematology. China Agriculture Press, Beijing. (in Chinese)
Goodin M M, Zaitlin D, Naidu R A, Lommel S A. 2008. Nicotiana benthamiana: Its history and future as a model for plant–pathogen interactions. Molecular Plant–Microbe Interactions, 21, 1015–1026.
Hahn M L, Sarah J L, Boisseau M, Vines N J, Burrows P R. 1996. Reproductive fitness and pathogenicity of selected Radopholus populations on two banana cultivars. Plant Pathology, 45, 1–9.
Jones J T, Haegeman A, Danchin E G J, Gaur H S, Helder J, Jones M G K, Kikuchi T, Manzanilla-López R, Palomares-Rius J E, Wesemael W M L. Perry R N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961. 
Kaplan D T. 1994. An assay to estimate citrus rootstock resistance to burrowing nematodes. Florida State Horticultural Society Meeting, 107, 85–89.
Li Y, Wang K, Lu Q S, Du J, Wang Z Y, Wang D S, Sun B J, Li H L. 2017. Transgenic Nicotiana benthamiana plants expressing a hairpin RNAi construct of a nematode Rs-cps gene exhibit enhanced resistance to Radopholus similis. Scientific Reports, 7, 1–11.
Lin B, Shen H. 2017. Burrowing nematode Radopholus similis (Cobb). In: Wan F, Jiang M, Zhan A, eds., Biological Invasions and its Management in China II. Springer, Netherlands. pp. 23–31.
Naalden D, Verbeek R, Gheysen G. 2018. Nicotiana benthamiana as model plant for Meloidogyne graminicola infection. Nematology, 20, 491–499.
Narayan R K J. 1987. Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae). Plant Systematics and Evolution, 157, 161–180.
Nguyen H P, Chakravarthy S, Velásquez A C, Mclane H L, Martin G B. 2010. Methods to study PAMP-triggered immunity using tomato and Nicotiana benthamiana. Molecular Plant–Microbe Interactions, 23, 991–999.
Opokuasiama Y, Yeboah M A. 2003. Response of tomato cultivars to different inoculum concentrations of root-knot nematode (Meloidogyne incognita, Kafoid & White, 1919). Ghana Journal of Agricultural Science, 36, 87–95.
Pinochet J, Rowe P R. 1978. Reaction of two banana cultivars to three different nematodes. Plant Disease Report, 62, 727–729.
Pombo M A, Rosli H G, Fernandez-Pozo N, Bombarely A. 2020. Nicotiana benthamiana, a popular model for genome evolution and plant–pathogen interactions. In: Ivanov N V, Sierro N, Peitsch M C, eds., The Tobacco Plant Genome. Springer, Switzerland. pp. 231–248
Price N S. 1994. Alternate cropping in the management of Radopholus similis and cosmopolites sordidus two important pests of banana and plantain. International Journal of Pest Management, 40, 237–244.
Qin D, Xie H, Pei Y Y, Xu C L, Han Y C, Huang C X, Li Y. 2009. Pathogenicity of 6 populations of Radopholus similis from ornamentals to 4 banana cultivars. Scientia Agricultura Sinica, 42, 3898–3903. (in Chinese)
Sarah J L, Sabatini C, Boisseau M. 1993. Differences in pathogenicity to Banana (Musa sp., cv. poyo) among isolates of Radopholus similis from different production areas of the world. Nematropica, 23, 75–79. 
Tian Z, Shi H, Munawar M, Zheng J W. 2019. Pectate lyase is a factor in the adaptability for Heterodera glycines infecting tobacco. Journal of Integrative Agriculture, 18, 618–626.  
Xie H. 2006. Detection and control of Radopholus similis. Plant Quarantine, 20, 321–324. (in Chinese)
Yang J P. 2006. Improvement of traditional paraffin section preparation methods. Journal of Biology, 1, 45–46. (in Chinese)
Zhang C, Xu C L, Wu Y H, Xie H. 2009. Control effects of four nematicides on burrowing nematode of Anthurium andraeanum. Journal of Huazhong Agricultural University, 28, 551–555. (in Chinese)
[1] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[2] GE Feng-yong, ZHENG Na, ZHANG Liu-ping, HUANG Wen-kun, PENG De-liang, LIU Shi-ming. Chemical mutagenesis and soybean mutants potential for identification of novel genes conferring resistance to soybean cyst nematode[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2734-2744.
[3] CHEN Zheng-jie, YANG Cong, TANG Deng-guo, ZHANG Lei, ZHANG Ling, QU Jing-tao, LIU Jian. Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1432-1442.
[4] Md. Yeakub Khan, Md. Manjurul Haque, Abul Hossain Molla, Md. Mizanur Rahman, Mohammad Zahangeer Alam . Antioxidant compounds and minerals in tomatoes by Trichoderma-enriched biofertilizer and their relationship with the soil environments[J]. >Journal of Integrative Agriculture, 2017, 16(03): 691-703.
No Suggested Reading articles found!