Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (4): 1068-1081    DOI: 10.1016/j.jia.2022.07.002
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Transcriptional regulation of secondary metabolism and autophagy genes in response to DNA replication stress in Setosphaeria turcica

MENG Ya-nan1, 2, 3, 4*, ZHANG Xin-jie2*, ZENG Fan-li1, 2, 3, 4*#, ZHAI Wei-bo1, 2, 4, LI Pan1, 2, 4, HU Jing-jing1, 2, 4, XIAO Sheng-lin1, 2, 4, HAO Zhi-min1, 2, 4, CAO Zhi-yan1, 4, 5, CHEN Chuan3, DONG Jin-gao1, 4, 5# 

1 State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, P.R.China

2 College of Life Sciences, Hebei Agricultural University, Baoding 071001, P.R.China

3 Key Laboratory of Microbial Diversity Research and Application of Hebei Province, School of Life Sciences, Hebei University, Baoding 071001, P.R.China

4 Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding 071001, P.R.China

5 College of Plant Protection, Hebei Agricultural University, Baoding 071001, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

玉米作为我国第一大粮食作物,可用于人类食品、动物饲料,工业燃料等领域,是重要的经济和粮食作物。玉米大斑病菌(Setosphaeria turcica)引发的玉米大斑病(Northern corn leaf blight NCLB)是严重威胁玉米粮食安全的重要植物病原真菌。该病菌在侵染过程中需要借助于特殊的侵染结构-附着胞。利用膨压和物理机械力穿透寄主植物表皮,完成其侵染过程。虽然,实验室前期已经证实玉米大斑病菌在应对基因损伤胁迫时,通过激活ATR介导的S期检验点,关闭附着胞介导的侵染寄主的能力,同时促进黑色素合成进行自我保护。但是,在响应DNA损伤应激反应中是否还存在其他的调控途径尚未明确。为解析该调控过程,本研究利用DNA损伤药物羟基脲(HU)处理玉米大斑病菌分生孢子并进行转录组测序。通过对转录组数据中显著差异基因进行注释聚类分析,qPCR表达模式分析,经典分子生物学验证以及生物信息学分析,最终鉴定到一些列基因参与DNA损伤应激反应。结果显示,玉米大斑病菌在应对DNA损伤胁迫时,大量次级代谢和黑色素生物合成相关基因在附着胞形成过程中被阻断。次级代谢生物合成基因包括醇脱氢酶类、多铜氧化酶、ABC蛋白转运家族、细胞色素P450和含FAD结构域的单加氧酶等植物病原体感染有关的基因。此外,研究发现一系列细胞自噬基因在HU处理后显著上调。其中包括StATG3StATG4StATG5StATG7StATG16等细胞自噬基因。并且研究结果表明该细胞自噬调控途径受到ATR介导的S期检查点调控。因此,本研究首次提出玉米大斑病菌在应对基因损伤胁迫时,关闭附着胞侵染寄主的能力,同时激活ATR介导的S期检验点促进细胞自噬的发生,这可能是除黑色素外的另一种自我保护机制,并且该调控过程在进化过程中是保守的。



Abstract  

The fungal pathogen Setosphaeria turcica causes northern corn leaf blight (NCLB), which leads to considerable crop losses.  Setosphaeria turcica elaborates a specialized infection structures called appressorium for maize infection.  Previously, we demonstrated that the Sturcica triggers an S-phase checkpoint and ATR (Ataxia Telangiectasia and Rad3 related)-dependent self-protective response to DNA genotoxic insults during maize infection.  However, how the regulatory mechanism works was still largely unknown.  Here, we report a genome wide transcriptional profile analysis during appressorium formation in the present of DNA replication stress.  We performed RNA-Seq analysis to identify Stuicica genes responsive to DNA replication stress.  In the current work, we found that appressorium-mediated maize infection by Sturcica is significantly blocked by S-phase checkpoint.  A large serial of secondary metabolite and melanin biosynthesis genes were blocked in appressorium formation of Sturcica during the replication stress.  The secondary metabolite biosynthesis genes including alcohol dehydrogenase GroES-like domain, multicopper oxidase, ABC-transporter families, cytochrome P450 and FAD-containing monooxygenase were related to plant pathogen infection.  In addition, we demonstrated that autophagy in Sturcica is up-regulated by ATR as a defense response to stress.  We identified StATG3, StATG4, StATG5, StATG7 and StATG16 genes for autophagy were induced by ATR-mediated S-phase checkpoint.  We therefore propose that in response to genotoxic stress, Sturcica utilizes ATR-dependent pathway to turn off transcription of genes governing appressorium-mediated infection, and meanwhile inducing transcription of autophagy genes likely as a mechanism of self-protection, aside from the more conservative responses in eukaryotes.

Keywords:  Setosphaeria turcica        appressorium       secondary metabolite       autophagy       DNA replication stress  
Received: 25 January 2022   Accepted: 13 April 2022
Fund: 

This work was supported by the grants from the Youth Top Talent Project from Hebei Provincial Department of Education, China (BJ2020003), the China Agriculture Research System of MOF and MARA (CARS-02-25), the State Key Laboratory of North China Crop Improvement and Regulation, Open Project of Key Laboratory of Microbial Diversity Research and Application of Hebei Province (MDRA202101), the Hebei Provincial Department of Bureau of Science and Technology (360-0803-JSN-3YGS), and the Natural Science Foundation of Hebei Province (C202204138).    

About author:  MENG Ya-nan, E-mail: mengyananmn@163.com; ZHANG Xin-jie, E-mail: 3076578965@qq.com; #Correspondence ZENG Fan-li, E-mail: shmzfl@hebau.edu.cn; DONG Jin-gao, E-mail: dongjingao@126.com * These authors contributed equally to this study.

Cite this article: 

MENG Ya-nan, ZHANG Xin-jie, ZENG Fan-li, ZHAI Wei-bo, LI Pan, HU Jing-jing, XIAO Sheng-lin, HAO Zhi-min, CAO Zhi-yan, CHEN Chuan, DONG Jin-gao. 2023.

Transcriptional regulation of secondary metabolism and autophagy genes in response to DNA replication stress in Setosphaeria turcica . Journal of Integrative Agriculture, 22(4): 1068-1081.

Bernard A, Jin M, González-Rodríguez P, Füllgrabe J, Delorme-Axford E, Backues S K, Joseph B, Klionsky D J. 2015. Rph1/kdm4 mediates nutrient-limitation signaling that leads to the transcriptional induction of autophagy. Current Biology, 25, 546–555. 
Branzei D, Foiani M. 2006. The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation. Experimental Cell Research, 312, 2654–2659. 
Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair (Amst), 8, 1038–1046. 
Bustin S A, Benes V, Garson J A, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl M W, Shipley G L, Vandesompele J, Wittwer C T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622. 
Calvo A M, Wilson R A, Bok J W, Keller N P. 2002. Relationship between secondary metabolism and fungal development. Microbiology and Molecula Biology Reviews, 66, 447–459. 
Cao Z Y, Zhang K, Guo X Y, Turgeon B G, Dong J G. 2020. A genome resource of Setosphaeria turcica, causal agent of northern leaf blight of maize. Phytopathology, 110, 2014–2016. 
Chen Y P, Wu J H, Liang G, Geng G H, Zhao F, Yin P, Nowsheen S, Wu C M, Li Y H, Li L, Kim W, Zhou Q, Huang J Z, Liu J Q, Zhang C, Guo G J, Deng M, Tu X Y, Gao X M, Liu Z M, et al. 2020. CHK2–FOXK axis promotes transcriptional control of autophagy programs. Science Advances, 6, eaax5819. 
Choi J, Chung H, Lee G W, Koh S K, Chae S K, Lee Y H. 2015. Genome-wide analysis of hypoxia-responsive genes in the rice blast fungus, Magnaporthe oryzae. PLoS ONE, 10, e134939. 
Corrales Escobosa A R, Rangel Porras R A, Meza Carmen V, Gonzalez Hernandez G A, Torres Guzman J C, Wrobel K, Wrobel K, Roncero M I, Gutierrez Corona J F. 2011. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genetics Biology, 48, 886–895. 
Dawson R J, Locher K P. 2006. Structure of a bacterial multidrug ABC transporter. Nature, 443, 180–185.
Eapen V V, Waterman D P, Bernard A, Schiffmann N, Sayas E, Kamber R, Lemos B, Memisoglu G, Ang J, Mazella A, Chuartzman S G, Loewith R J, Schuldiner M, Denic V, Klionsky D J, Haber J E. 2017. A pathway of targeted autophagy is induced by dna damage in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 114, E1158. 
Gomes L R, Menck C F M, Leandro G S. 2017. Autophagy roles in the modulation of DNA repair pathways. International Journal of Molecular Sciences, 18, 2351. 
Gong X D, Liu Y W, Bi H H, Yang X R, Han J M, Dong J G, Gu S Q. 2021. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum. Journal of  Integrative Agriculture, 20, 147–158.
Graminha M A, Rocha E M, Prade R A, Martinez-Rossi N M. 2004. Terbinafine resistance mediated by salicylate 1-monooxygenase in Aspergillus nidulans. Antimicrob Agents Chemother, 48, 3530–3535. 
Gu S Q, Li P, Wu M, Hao Z M, Gong X D, Zhang X Y, Tian L, Zhang P, Wang Y, Cao Z Y, Fan Y S, Han J M, Dong J G. 2014. StSTE12 is required for the pathogenicity of Setosphaeria turcica by regulating appressorium development and penetration. Microbiological Research, 169, 817–823. 
Guo X Y, Liu N, Liu B H, Zhou L H, Cao Z Y, Han J M, Dong J G. 2022. Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism. Journal of  Integrative Agriculture, 21, 762–773.
Huang M, Zhou Z, Elledge S J. 1998. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell, 94, 595–605
Huo J, Zhao B, Zhang Z, Xing J, Zhang J, Dong J, Fan Z. 2018. Structure-based discovery and synthesis of potential transketolase inhibitors. Molecules, 23, 2116. 
Van Inghelandt D, Melchinger A E, Martinant J P, Stich B. 2012. Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biology, 12, 56. 
Jaehnig E J, Kuo D, Hombauer H, Ideker T G, Kolodner R D. 2013. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Reports, 4, 174–188. 
Jawallapersand P, Mashele S S, Kovačič L, Stojan J, Komel R, Pakala S B, Kraševec N, Syed K. 2014. Cytochrome P450 monooxygenase CYP53 family in fungi: Comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. PLoS ONE, 9, e107209. 
Kim E M, Jang Y K, Park S D. 2002. Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase. Nucleic Acids Research, 30, 643–651.
Klinkenberg L G, Webb T, Zitomer R S. 2006. Synergy among differentially regulated repressors of the ribonucleotide diphosphate reductase genes of Saccharomyces cerevisiae. Eukaryotic Cell, 5, 1007–1017. 
Kolodner R D, Putnam C D, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science, 297, 552–557. 
Kües U, Rühl M. 2011. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Current Genomics, 12, 72–94.
Lahtinen M, Kruus K, Heinonen P, Sipilä J. 2009. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Journal of Agricultural & Food Chemistry, 57, 8357–8365. 
Li F, Zheng L D, Chen X, Zhao X, Briggs S D, Du H N. 2017. Gcn5-mediated Rph1 acetylation regulates its autophagic degradation under DNA damage stress. Nucleic Acids Research, 45, 5183–5197. 
Liu J, Wu J, Li Z. 2014. Enoyl acyl carrier protein reductase (FabI) catalyzed asymmetric reduction of the C=C double bond of alpha, beta-unsaturated ketones: preparation of (R)-2-alkyl-cyclopentanones. Chemical Communications, 50, 9729–9732. 
Liu N, Shen S, Jia H, Yang B B, Guo X Y, Si H L, Cao Z Y, Dong J G. 2019. Heterologous expression of Stlac2, a laccase isozyme of Setosphearia turcica, and the ability of decolorization of malachite green. International Journal of Biological Macromolecules, 138, 21–28. 
Liu X H, Xu F, Snyder J H, Shi H B, Lu J P, Lin F C. 2016. Autophagy in plant pathogenic fungi. Seminars in Cell & Developmental Biology, 57, 128–137. 
Ma S X, Cao K K, Liu N, Meng C, Cao Z Y, Dai D Q, Jia H, Zang J P, Li Z, Hao Z Y, Gu S Q, Dong J G. 2017. The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biology, 121, 589–601. 
Meng Y N, Zeng F L, Hu J J, Li P, Xiao S L, Zhou L H, Gong J G, Liu Y W, Hao Z M, Cao Z Y, Dong J G. 2022. Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. Molecular Plant Pathology, 23, 32–44.
Nguyen L N, Bormann J, Le G T, Stärkel C, Olsson S, Nosanchuk J D, Giese H, Schäfer W. 2011. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genetics Biology, 48, 217–224. 
Osés-Ruiz M, Talbot N J. 2017. Cell cycle-dependent regulation of plant infection by the rice blast fungus Magnaporthe oryzae. Communicative Integrative Biology, 10, e1372067. 
Putnam C D, Jaehnig E J, Kolodner R D. 2009. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst), 8, 974–982. 
Rutten L, Ribot C, Trejo-Aguilar B, Wösten H A, de Vries R P. 2009. A single amino acid change (Y318F) in the L-arabitol dehydrogenase (LadA) from Aspergillus niger results in a significant increase in affinity for D-sorbitol. BMC Microbiology, 9, 166. 
Shen S, Hao Z M, Gu S Q, Wang J J, Cao Z Y, Li Z Y, Wang Q, Li P, Hao J, Dong J G. 2013. The catalytic subunit of cAMP-dependent protein kinase A StPKA-c contributes to conidiation and early invasion in the phytopathogenic fungus Setosphaeria turcica. FEMS Microbiology Letters, 343, 135–144. 
Shin J, Kim J E, Lee Y W, Son H. 2018. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum. Toxins, 10, 112. 
Soanes D M, Chakrabarti A, Paszkiewicz K H, Dawe A L, Talbot N J. 2012. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 8, e1002514. 
La Valle R, Wittenberg C. 2001. A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae. Genetics, 158, 549–562. 
Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot N J. 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science, 312, 580–583. 
Wang J X, Long F, Zhu H, Zhang Y, Wu J Y, Shen S, Dong J G, Hao Z M. 2021. Bioinformatic analysis and functional characterization of CFEM proteins in Setosphaeria turcica. Journal of Integrative Agriculture, 20, 2438–2449.
Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63. 
Zeng F L, Hua Y, Liu X Q, Liu S J, Lao K J, Zhang Z, Kong D C. 2018. Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex in the biogenesis of RNA polymerase II. Molecular and Cellular Biology, 38, doi: 10.1128/MCB.00091-18.
Zeng F L, Meng Y N, Hao Z M, Li P, Zhai W B, Shen S, Cao Z Y, Dong J G. 2020. Setosphaeria turcica ATR turns off appressorium-mediated maize infection and triggers melanin involved self-protection in response to genotoxic stress. Molecular Plant Pathology, 21, 401–414.
Zhang E, Cao Y, Xia Y. 2018. Ethanol dehydrogenase | Contributes to growth and sporulation under low oxygen condition via detoxification of acetaldehyde in Metarhizium acridum. Frontiers in Microbiology, 9, 1932.  
Zhang K, Yuan X M, Zang J P, Wang M, Zhao F X, Li P F, Cao H Z, Han J M, Xing J H, Dong J G. 2018. The kynurenine 3-monooxygenase encoding gene, BcKMO, is involved in the growth, development, and pathogenicity of Botrytis cinerea. Frontiers in Microbiology, 9, 1039. 
Zhang S R, Hao Z M, Wang L H, Shen S, Cao Z Y, Xin Y Y, Hou M L, Gu S Q, Han J M, Dong J G. 2012. StRas2 regulates morphogenesis, conidiation and appressorium development in Setosphaeria turcica. Microbiological Research, 167, 478–486. 
Zhu X, Williamson P R. 2004. Role of laccase in the biology and virulence of Cryptococcus neoformans. Fems Yeast Research, 5, 1–10. 

[1] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[2] LIU Ning, ZHANG Qian-qian, JIA Hui, ZHAO Bin, ZHU Zi-ping , CAO Zhi-yan, DONG Jin-gao. Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2019-2030.
[3] PAN Shuai-qun, QIAO Jing-fen, WANG Rui, YU Hui-lin, WANG Cheng, Kerry TAYLOR, PAN Hong-yu. Intelligent diagnosis of northern corn leaf blight with deep learning model[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1094-1105.
[4] GUO Xiao-yue, LIU Ning, LIU Bing-hui, ZHOU Li-hong, CAO Zhi-yan, HAN Jian-min, DONG Jin-gao . Melanin, DNA replication, and autophagy affect appressorium development in Setosphaeria turcica by regulating glycerol accumulation and metabolism[J]. >Journal of Integrative Agriculture, 2022, 21(3): 762-773.
[5] GUO Lin-hui, GE Da-peng, REN Yuan, DONG Jian-mei, ZHAO Xue-qing, LIU Xue-qing, YUAN Zhao-he. The comparative analysis and identification of secondary metabolites between Tibet wild and cultivated pomegranates (Punica granatum L.) in China[J]. >Journal of Integrative Agriculture, 2022, 21(3): 736-750.
[6] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[7] David GRANADA, Lorena LóPEZ-LUJAN, Sara RAMíREZ-RESTREPO, Juan MORALES, Carlos PELáEZ-JARAMILLO, Galdino ANDRADE, Juan Carlos BEDOYA-PéREZ. Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass[J]. >Journal of Integrative Agriculture, 2020, 19(3): 748-758.
[8] ZHANG Bin, CUI Guo-bing, CHANG Chang-qing, WANG Yi-xu, ZHANG Hao-yang, CHEN Bao-shan, DENG Yi-zhen, JIANG Zi-de. The autophagy gene ATG8 affects morphogenesis and oxidative stress tolerance in Sporisorium scitamineum[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1024-1034.
[9] WANG Zhong-yue , SU Jun-ping, LIU Wei-wei, GUO Yu-yuan. Effects of intercropping vines with tobacco and root extracts of tobacco on grape phylloxera, Daktulosphaira vitifoliae Fitch[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1367-1375.
[10] XU Liang, WANG Xiao-han, LUO Rui-ya, LU Shi-qiong, GUO Ze-jian, WANG Ming-an, LIU Yang, ZHOU Li-gang. Secondary metabolites of rice sheath blight pathogen Rhizoctonia solani Kühn and their biological activities[J]. >Journal of Integrative Agriculture, 2015, 14(1): 80-87.
No Suggested Reading articles found!