Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1956-1966    DOI: 10.1016/j.jia.2024.01.010
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae

Yue Jiang1, 2, Rong Wang3, Lili Du1, Xueyu Wang3, Xi Zhang3, Pengfei Qi1, Qianfei Wu1, Baoyi Peng1, Zonghua Wang1, 3, 4#, Mo Wang2#, Ya Li1, 3, 5#

1 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China

3 Fujian Universities Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4 Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou 350108, China

5 Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在酵母和动植物中,保守DNA修复复合物MMS21-SMC5/6已经被广泛研究然而,在植物病原真菌尤其在对水稻极具破坏性的稻瘟病菌Magnaporthe oryzae中,该复合物功能尚不清楚本文对MMS21-SMC5在稻瘟病菌中的同源物MoMMS21MoSMC5进行了功能研究。首先,我们发现DNA损伤诱导剂(腐草霉素)能显著抑制稻瘟病菌营养生长、侵染相关发育(孢子产生、孢子萌发和附着胞形成)和致病性,表明DNA损伤修复对稻瘟病菌至关重要其次利用酵母双杂交、双分子荧光以及共定位实验发现,MoMMS21MoSMC5稻瘟病菌细胞核中互作,表明它们在稻瘟病菌中也作为复合物行使功能。最后,基因敲除实验表明MoMMS21MoSMC5对稻瘟病菌侵染相关发育和致病性都至关重要,而只有MoMMS21参与了病菌营养生长和对腐草霉素响应MoSMC5的敲除病菌的营养生长和腐草霉素敏感性没有影响。综上该研究揭示了DNA损伤修复复合物MMS21-SMC5在稻瘟菌中的作用机制突出了它们除DNA损伤修复之外的生物学功能差异



Abstract  The conserved DNA damage repair complex, MMS21–SMC5/6 (Methyl methane sulfonate 21–Structural maintenance of chromosomes 5/6), has been extensively studied in yeast, animals, and plants.  However, its role in phytopathogenic fungi, particularly in the highly destructive rice blast fungus Magnaporthe oryzae, remains unknown.  In this study, we functionally characterized the homologues of this complex, MoMMS21 and MoSMC5, in M. oryzae.  We first demonstrated the importance of DNA damage repair in M. oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth, infection-related development and pathogenicity in this fungus.  Additionally, we discovered that MoMMS21 and MoSMC5 interacted in the nuclei, suggesting that they also function as a complex in M. oryzae.  Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M. oryzae, while only MoMMS21 deletion affected growth and sensitivity to phleomycin, indicating its specific involvement in DNA damage repair.  Overall, our results provide insights into the roles of MoMMS21 and MoSMC5 in M. oryzae, highlighting their functions beyond DNA damage repair.


Keywords:  Magnaporthe oryzae       MMS21        SMC5        DNA damage repair        pathogenicity   
Received: 25 September 2023   Accepted: 12 December 2023
Fund: This research was supported by the National Key Research and Development Program of China (2023YFD1400200), the Natural Science Foundation of Fujian Province, China (2022J01125), the Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, China (MIMCP-202301), the Fujian Provincial Science and Technology Key Project, China (2022NZ030014), and the National Natural Science Foundation of China (NSFC31871914). 
About author:  Yue Jiang, Tel: +86-591-83789365, E-mail: jiangyue8926@163.com; #Correspondence Zonghua Wang, Tel: +86-591-83789365, E-mail: zonghuaw@163.com; Mo Wang, Tel: +86-591-83789365, E-mail: wangmo108@163.com; Ya Li, Tel: +86-591-83789365, E-mail: liya-81@163.co

Cite this article: 

Yue Jiang, Rong Wang, Lili Du, Xueyu Wang, Xi Zhang, Pengfei Qi, Qianfei Wu, Baoyi Peng, Zonghua Wang, Mo Wang, Ya Li. 2024.

The DNA damage repair complex MoMMS21–MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae . Journal of Integrative Agriculture, 23(6): 1956-1966.

Akhmedov A T, Frei C, Tsai-Pflugfelder M, Kemper B, Gasser S M, Jessberger R. 1998. Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. Journal of Biological Chemistry, 273, 24088–24094.

Andrews E A, Palecek J, Sergeant J, Taylor E, Lehmann A R, Watts F Z. 2005. Nse2, a component of the smc5–6 complex, is a sumo ligase required for the response to DNA damage. Molecular and Cellular Biology, 25, 185–196.

Ball A J, Yokomori K. 2001. The structural maintenance of chromosomes (SMC) family of proteins in mammals. Chromosome Research, 9, 85–96.

Bisht S, Faiq M, Tolahunase M, Dada R. 2017. Oxidative stress and male infertility. Nature Reviews Urology, 14, 470–485.

Cao Y, Chen J, Xie X, Liu S, Jiang Y, Pei M, Wu Q, Qi P, Du L, Peng B, Lan J, Wu F, Feng K, Zhang Y, Fang Y, Liu M, Jaber M Y, Wang Z, Olsson S, Lu G, et al. 2022. Characterization of two infection-induced transcription factors of Magnaporthe oryzae reveals their roles in regulating early infection and effector expression. Molecular Plant Pathology, 23, 1200–1213.

Duan X, Sarangi P, Liu X, Rangi G K, Zhao X, Ye H. 2009. Structural and functional insights into the roles of the mms21 subunit of the SMC5/6 complex. Molecular Cell, 35, 657–668.

Fernandez J, Marroquin-Guzman M, Wilson R A. 2014. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathogens, 10, e1004354.

Fujioka Y, Kimata Y, Nomaguchi K, Watanabe K, Kohno K. 2002. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5-SMC6 complex involved in DNA repair. Journal of Biological Chemistry, 277, 21585–21591.

Han Y, Zhong Z, Song L, Stefan O, Wang Z, Lu G. 2018. Evolutionary analysis of plant jacalin-related lectins (jrls) family and expression of rice jrls in response to Magnaporthe oryzae. Journal of Integrative Agriculture, 17, 1252–1266.

Hirano T. 2006. At the heart of the chromosome: SMC proteins in action. Nature Reviews Molecular Cell Biology, 7, 311–322.

Jackson S P, Bartek J. 2009. The DNA-damage response in human biology and disease. Nature, 461, 1071–1078.

Jeppsson K, Kanno T, Shirahige K, Sjögren C. 2014. The maintenance of chromosome structure: Positioning and functioning of SMC complexes. Nature Reviews Molecular Cell Biology, 15, 601–614.

Kello M, Takac P, Kubatka P, Kuruc T, Petrova K, Mojzis J. 2020. Oxidative stress-induced DNA damage and apoptosis in clove buds-treated mcf-7 cells. Biomolecules, 10, 139.

Kerppola T K. 2008. Bimolecular fluorescence complementation (bifc) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465–487.

Kliszczak M, Stephan A K, Flanagan A M, Morrison C G. 2012. Sumo ligase activity of vertebrate mms21/nse2 is required for efficient DNA repair but not for SMC5/6 complex stability. DNA Repair, 11, 799–810.

Kunkel T A, Erie D A. 2015. Eukaryotic mismatch repair in relation to DNA replication. Annual Review of Genetics, 49, 291–313.

Lehmann A R. 2005. The role of SMC proteins in the responses to DNA damage. DNA Repair, 4, 309–314.

Leung H, Borromeo E S, Bernardo M A, Notteghem J L. 1988. Genetic-analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology, 78, 1227–1233.

Li Y, Zheng X, Zhu M, Chen M, Zhang S, He F, Chen X, Lv J, Pei M, Zhang Y, Zhang Y, Wang W, Zhang J, Wang M, Wang Z, Li G, Lu G. 2019. Moivd-mediated leucine catabolism is required for vegetative growth, conidiation and full virulence of the rice blast fungus Magnaporthe oryzae. Frontiers in Microbiology, 10, 444.

Li Y, Zhu J, Hu J, Meng X, Zhang Q, Zhu K, Chen X, Chen X, Li G, Wang Z, Lu G. 2016. Functional characterization of electron-transferring flavoprotein and its dehydrogenase required for fungal development and plant infection by the rice blast fungus. Scientific Reports, 6, 24911.

Liu X, Gao Y, Guo Z, Wang N, Wegner A, Wang J, Zou X, Hu J, Liu M, Zhang H, Zheng X, Wang P, Schaffrath U, Zhang Z. 2022. Moiug4 is a novel secreted effector promoting rice blast by counteracting host osahl1-regulated ethylene gene transcription. New Phytologist, 235, 1163–1178.

Mcdonald W H, Pavlova Y, Yates J R, Boddy M N. 2003. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast SMC5-SMC6 complex. The Journal of Biological Chemistry, 278, 45460–45467.

Murray J M, Carr A M. 2008. SMC5/6: A link between DNA repair and unidirectional replication? Nature Reviews Molecular Cell Biology, 9, 177–182.

Oses-Ruiz M, Sakulkoo W, Littlejohn G R, Martin-Urdiroz M, Talbot N J. 2017. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Proceedings of the National Academy of Sciences of the United States of America, 114, E237–E244.

Pebernard S, Mcdonald W H, Pavlova Y, Yates J R, Boddy M N. 2004. Nse1, nse2, and a novel subunit of the Smc5-Smc6 complex, Nse3, play a crucial role in meiosis. Molecular Biology of the Cell, 15, 4866–4876.

Pebernard S, Wohlschlegel J, Mcdonald W H, Yates J R, Boddy M N. 2006. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Molecular and Cellular Biology, 26, 1617–1630.

Potts P R. 2009. The Yin and Yang of the mms21-SMC5/6 sumo ligase complex in homologous recombination. DNA Repair, 8, 499–506.

Potts P R, Yu H. 2005. Human mms21/nse2 is a sumo ligase required for DNA repair. Molecular and Cellular Biology, 25, 7021–7032.

Prakash L, Prakash S. 1977. Isolation and characterization of mms-sensitive mutants of Saccharomyces cerevisiae. Genetics, 86, 33–55.

Qi Y, Liang Z, Zhou J, Wang Z, Lu G, Li G. 2015. Magnaporthe Rab5 homologs show distinct functions in nerve growth factor (ngf)-mediated neurite outgrowth and cell differentiation. Journal of Integrative Agriculture, 14, 823–829.

Saunders D G, Aves S J, Talbot N J. 2010. Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell, 22, 497–507.

Strom L, Sjogren C. 2007. Chromosome segregation and double-strand break repair - a complex connection. Current Opinion in Cell Biology, 19, 344–349.

Strunnikov A V, Jessberger R. 1999. Structural maintenance of chromosomes (SMC) proteins. Conserved molecular properties for multiple biological functions. European Journal of Biochemistry, 263, 6–13.

Torres-Rosell J, Machin F, Farmer S, Jarmuz A, Eydmann T, Dalgaard J Z, Aragon L. 2005. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nature Cell Biology, 7, 412–419.

Valent B. 2021. The impact of blast disease: Past, present, and future. Methods in Molecular Biology, 2356, 1–18.

Verver D E, Zheng Y, Speijer D, Hoebe R, Dekker H L, Repping S, Stap J, Hamer G. 2016. Non-SMC element 2 (nsmce2) of the SMC5/6 complex helps to resolve topological stress. International Journal of Molecular Sciences, 17, 1782.

Wang L, Cai X, Xing J, Liu C, Hendy A, Chen X L. 2019. Urm1-mediated ubiquitin-like modification is required for oxidative stress adaptation during infection of the rice blast fungus. Frontiers in Microbiology, 10, 2039.

Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I. 2009. The structural maintenance of chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell, 21, 2688–2699.

Watts F Z, Skilton A, Ho J C, Boyd L K, Trickey M A, Gardner L, Ogi F X, Outwin E A. 2007. The role of Schizosaccharomyces pombe sumo ligases in genome stability. Biochemical Society Transactions, 35, 1379–1384.

Wu N, Kong X, Ji Z, Zeng W, Potts P R, Yokomori K, Yu H. 2012. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes & Development, 26, 1473–1485.

Wu N, Yu H. 2012. The SMC complexes in DNA damage response. Cell & Bioscience, 2, 5.

Xie J, Tang W, Lu G, Hong Y, Zhong Z, Wang Z, Zheng H. 2023. Histone h3k27me3 methylation regulates the expression of secreted proteins distributed at fast-evolving regions through transcriptional repression of transposable elements. Journal of Integrative Agriculture, 22, 3059–3068.

Yang C, Li J, Chen X, Zhang X, Liao D, Yun Y, Zheng W, Abubakar Y S, Li G, Wang Z, Zhou J. 2020. Fgvps9, a rab5 gef, is critical for don biosynthesis and pathogenicity in Fusarium graminearum. Frontiers in Microbiology, 11, 1714.

Zhang X, Chen S, Abubakar Y S, Mao X, Miao P, Wang Z, Zhou J, Zheng H. 2023. FgGyp8 as a putative FgRab1 gap is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum. Journal of Integrative Agriculture, 22, 3444–3457.

Zhao X, Blobel G. 2005. A sumo ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4777–4782.

[1] Libin Liang, Yaning Bai, Wenyan Huang, Pengfei Ren, Xing Li, Dou Wang, Yuhan Yang, Zhen Gao, Jiao Tang, Xingchen Wu, Shimin Gao, Yanna Guo, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li. Genetic and biological properties of H9N2 avian influenza viruses isolated in central China from 2020 to 2022[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2778-2791.
[2] Dong Deng, Wenqi Wu, Canxing Duan, Suli Sun, Zhendong Zhu.

A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China [J]. >Journal of Integrative Agriculture, 2024, 23(1): 166-176.

[3] ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha. SsRSS1 mediates salicylic acid tolerance and contributes to virulence in sugarcane smut fungus[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2126-2137.
[4] ZHOU Jing-jing, ZHANG Xiao-ping, LIU Rui, LING Jian, LI Yan, YANG Yu-hong, XIE Bing-yan, ZHAO Jian-long, MAO Zhen-chuan. A Meloidogyne incognita effector Minc03329 suppresses plant immunity and promotes parasitism[J]. >Journal of Integrative Agriculture, 2023, 22(3): 799-811.
[5] ZHAO Yi-ran, ZHAO Yu-zhong, LIU Si-dang, XIAO Yi-hong, LI Ning, LIU Kui-hao, MENG Fan-liang, ZHAO Jun, LIU Meng-da, LI Bao-quan.

Phylogenetic and epidemiological characteristics of H9N2 avian influenza viruses in Shandong Province, China from 2019 to 2021 [J]. >Journal of Integrative Agriculture, 2023, 22(3): 881-896.

[6] HUANG Xin, CHI Yuan-kai, Addisie Abate BIRHAN, ZHAO Wei, QI Ren-de, PENG De-liang. The new effector AbSCP1 of foliar nematode (Aphelenchoides besseyi) is required for parasitism rice[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1084-1093.
No Suggested Reading articles found!