Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 30, 174–178.
Formisano G, Roig C, Esteras C, Ercolano M R, Nuez F, Monforte A J, Picó M B. 2012. Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution, 59, 1169–1184.
Gimode W, Clevenger J, McGregor C. 2019. Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Molecular Breeding, 40, 1.
Henderson I R, Dean C. 2004. Control of Arabidopsis flowering: The chill before the bloom. Development, 131, 3829–3838.
Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. 2007. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science, 316, 367–367.
Lazaro A, Valverde F, Piñeiro M, Jarillo J A. 2012. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell, 24, 982–999.
Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. 2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Gene Development, 15, 912–924.
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 61, 2247–2254.
Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows wheeler transform. Bioinformatics, 25, 1754–1760.
Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J. 2007. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell, 19, 1488–1506.
Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H. 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development, 135, 1481–1491.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods, 25, 402–408.
Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. 2014. QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theoretical and Applied Genetics, 127, 1491–1499.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.
Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L A, Picó B , Cañizares J. 2018. De novo assembly of zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology Journal, 16, 1161–1171.
Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez E M, Gómez P, Monforte A J, CañizaresJ, Picó B. 2017. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics, 18, 94.
Moon J, Suh S S, Lee H, Choi K R, Hong C B, Paek N C, Kim S G, Lee I. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal, 35, 613–623.
Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.
Ogden A B, Loy J B, Sideman R G. 2020. A single dominant gene, Ef, confers early flowering in acorn squash (Cucurbita pepo subsp. ovifera). Cucurbit Genetics Cooperative Report, 42, 30–36.
Sawa M, Nusinow D A, Kay S A, Imaizumi T. 2007. FKF1 and GIGANTEA complex for mation is required for day-length measurement in Arabidopsis. Science, 318, 261–265.
Shivashankara K S, Mathai C K. 1995. Physiological diversity among the potentially productive branches of regular and irregular bearing mango cultivars. Photosynthetica, 31, 135–140.
Simpson G G, Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time. Science, 296, 285–289.
Wang S H, Li H B, Li Y Y, Li Z, Qi J J, Lin T, Yang X Y, Zhang Z H, Huang S W. 2020. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiology, 182, 908–918.
Wen C L, Zhao W S, Liu W L, Yang L M, Wang Y H, Liu X W, Xu Y, Ren H Z, Guo Y D, Li C, Li J G, Weng Y Q, Zhang X L. 2019. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development, 146, dev180166.
Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. 2015. QTL mapping in multiple populations and development stages reveals dynamic QTL for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics, 128, 1747–1763.
Xanthopoulou A, Montero-Pau J, Mellidou I, Kissoudis C, Blanca J, Picó B, Tsaballa A, Tsaliki E, Dalakouras A, Paris H S, Ganopoulou M, Moysiadis T, Osathanunkul M, Tsaftaris A, Madesis P, Kalivas A, Ganopoulos I. 2019. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 6, 94.
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. 2021. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics, 22, 341.
Zhou Y, Hu L, Songa J, Jiang L, Liu S. 2019. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnology and Biotechnological Equipment, 33, 54–63.
|