Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3321-3330    DOI: 10.1016/j.jia.2022.09.009
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
QTL analysis of early flowering of female flowers in zucchini (Cucurbita pepo L.)

QU Shu-ping1, 2*, YANG Dan1, 2*, YU Hai-yang1, 2, CHEN Fang-yuan1, 2, WANG Ke-xin1, 2, DING Wen-qi1, 2, XU Wen-long1, 2, WANG Yun-li1, 2#

1 Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, P.R.China 
2 Laboratory of Molecular Breeding of Pumpkin, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, P.R.China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

早花能促进美洲南瓜早熟和高产,并能拮抗生物和非生物胁迫,是美洲南瓜重要的农艺性状。在本研究中,美洲南瓜自交系‘19’的第一雌花开花天数明显少于自交系‘113’,表现为稳定的早花性状。遗传分析表明,第一雌花开花天数是一个可遗传的数量性状,受多基因控制。采用QTL测序结合连锁分析的方法,在第41120号染色体上鉴定出3个用于第一雌花开花天数的QTL。为了验证这一结果,利用不同环境条件下生长的F2群体,开发InDel标记对第一雌花开花天数进行QTL定位分析。利用R/qtl软件的复合区间作图方法,在所有环境条件下均鉴定出1个主位点,位于20号染色体117 kb的候选区域。通过基因注释、基因序列比对和qRT-PCR分析,发现编码环指蛋白的Cp4.1LG20g08050基因可能是一个对美洲南瓜早花起相反调控作用的候选基因。总之,本研究结果为更好地认识美洲南瓜早花性状,为美洲南瓜的早花育种策略奠定了基础。



Abstract  

Early flowering promotes early maturity, production, and the capacity to counteract biotic and abiotic stresses, making it an important agronomic trait in zucchini.  The present study demonstrated that the zucchini inbred line ‘19’ consistently flowered early, taking significantly fewer days to bloom the first female flower (DFF) than the inbred line ‘113’.  Genetic analysis revealed that DFF, an inheritable quantitative trait, is controlled by multiple genes.  Based on the strategy of quantitative trait locus (QTL) sequencing (QTL-seq) combined with linkage analysis, three QTLs for DFF were identified on chromosomes 4, 11, and 20.  This study used additional F2 populations grown under different environmental conditions for QTL mapping analysis of DFF with insertion/deletion (InDel) markers to validate these results.  Using the composite interval mapping (CIM) method of R/qtl software, we only identified one major locus under all environmental conditions, located in a 117-kb candidate region on chromosome 20.  Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, we found that the Cp4.1LG20g08050 gene encoding a RING finger protein may be a candidate gene for the opposite regulation of early flowering in zucchini.  In summary, these results lay a foundation for a better understanding of early flowering and improving early flowering-based breeding strategies in zucchini.

Keywords:  Cucurbita pepo L.       early flowering        days to blooming of the first female flower        QTL analysis  
Received: 06 June 2022   Accepted: 29 August 2022
Fund: This research was supported by the grants from the National Natural Science Foundation of China (32072590 and 32002051), the China Postdoctoral Science Foundation (2019M661244), and the Academic Backbone Foundation of Northeast Agricultural University, China (20XG03).
About author:  QU Shu-ping, E-mail: spqu@neau.edu.cn; #Correspondence WANG Yun-li, E-mail: wangyunli@neau.edu.cn * These authors contributed equally to this study.

Cite this article: 

QU Shu-ping, YANG Dan, YU Hai-yang, CHEN Fang-yuan, WANG Ke-xin, DING Wen-qi, XU Wen-long, WANG Yun-li. 2023. QTL analysis of early flowering of female flowers in zucchini (Cucurbita pepo L.). Journal of Integrative Agriculture, 22(11): 3321-3330.

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology30, 174–178.

Formisano G, Roig C, Esteras C, Ercolano M R, Nuez F, Monforte A J, Picó M B. 2012. Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genetic Resources and Crop Evolution59, 1169–1184.

Gimode W, Clevenger J, McGregor C. 2019. Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Molecular Breeding, 40, 1.

Henderson I R, Dean C. 2004. Control of Arabidopsis flowering: The chill before the bloom. Development131, 3829–3838.

Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. 2007. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science316, 367–367.

Lazaro A, Valverde F, Piñeiro M, Jarillo J A. 2012. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell24, 982–999.

Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. 2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Gene Development15, 912–924.

Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany61, 2247–2254.

Li H, Durbin R. 2009. Fast and accurate short read alignment with burrows wheeler transform. Bioinformatics, 25, 1754–1760.

Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J. 2007. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. The Plant Cell19, 1488–1506.

Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H. 2008. Direct interaction of AGL24 and SOC1 integrates flowering signals in ArabidopsisDevelopment135, 1481–1491.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods25, 402–408.

Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S. 2014. QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theoretical and Applied Genetics127, 1491–1499.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.

Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L A, Picó B , Cañizares J. 2018. De novo assembly of zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology Journal16, 1161–1171.

Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez E M, Gómez P, Monforte A J, CañizaresJ, Picó B. 2017. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics18, 94.

Moon J, Suh S S, Lee H, Choi K R, Hong C B, Paek N C, Kim S G, Lee I. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in ArabidopsisPlant Journal, 35, 613–623.

Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research8, 4321–4325.

Ogden A B, Loy J B, Sideman R G. 2020. A single dominant gene, Ef, confers early flowering in acorn squash (Cucurbita pepo subsp. ovifera). Cucurbit Genetics Cooperative Report42, 30–36.

Sawa M, Nusinow D A, Kay S A, Imaizumi T. 2007. FKF1 and GIGANTEA complex for mation is required for day-length measurement in Arabidopsis. Science318, 261–265.

Shivashankara K S, Mathai C K. 1995. Physiological diversity among the potentially productive branches of regular and irregular bearing mango cultivars. Photosynthetica31, 135–140.

Simpson G G, Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time. Science296, 285–289.

Wang S H, Li H B, Li Y Y, Li Z, Qi J J, Lin T, Yang X Y, Zhang Z H, Huang S W. 2020. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiology182, 908–918.

Wen C L, Zhao W S, Liu W L, Yang L M, Wang Y H, Liu X W, Xu Y, Ren H Z, Guo Y D, Li C, Li J G, Weng Y Q, Zhang X L. 2019. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development146, dev180166.

Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R. 2015. QTL mapping in multiple populations and development stages reveals dynamic QTL for fruit size in cucumbers of different market classes. Theoretical and Applied Genetics128, 1747–1763.

Xanthopoulou A, Montero-Pau J, Mellidou I, Kissoudis C, Blanca J, Picó B, Tsaballa A, Tsaliki E, Dalakouras A, Paris H S, Ganopoulou M, Moysiadis T, Osathanunkul M, Tsaftaris A, Madesis P, Kalivas A, Ganopoulos I. 2019. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research6, 94.

Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. 2021. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics22, 341.

Zhou Y, Hu L, Songa J, Jiang L, Liu S. 2019. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnology and Biotechnological Equipment33, 54–63.

No related articles found!
No Suggested Reading articles found!