Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3346-3363    DOI: 10.1016/j.jia.2023.02.009
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China
GAO Ting1, HOU Bing-hao1, SHAO Shu-xian1, XU Meng-ting1, ZHENG Yu-cheng1, JIN Shan1, WANG Peng-jie2#, YE Nai-xing1#
1 College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, P.R.China
2 College of Horticulture, Northwest A&F University, Shaanxi 712100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  由于不同茶树品种遗传背景的多样性,导致茶类适制性存在差异,这也在一定程度上影响了其制成的茶叶品质特征。本研究通过代谢组学和转录组学技术对中国7个茶树主栽品种的一芽二叶进行分析,并基于WGCNA方法挖掘调控不同茶树品种特征代谢物的关键转录因子 (TF)。基于代谢组学的实验结果表明,铁观音和福建水仙的儿茶素类化合物含量较高;金萱的酚酸类、黄酮类、萜类和鞣质等次级代谢物含量高于其他6个品种;福鼎大白茶的氨基酸、亚麻酸和糖类物质含量较高。基于转录组学的实验结果表明,HCT(CsTGY12G0001876,CsTGY06G0003042)的上调可能导致了铁观音芽叶的绿原酸含量的积累;福建水仙芽叶的高L-抗坏血酸与GalLDH(CsTGY13G0000389)、MIOX(CsTGY14G0001769,CsTGY14G0001770)的高表达密切相关,并受到WRKY(CsTGY11G0001197)基因的调控;福鼎大白茶、龙井43、舒茶早和白毫早的游离脂肪酸含量较高,其中,MYB(CsTGY14G0002344)可能是调控棕榈油酸含量积累的关键基因。此外,我们的研究发现,铁观音中丰富的花青素类物质导致其芽叶呈现绿带紫红色,而MPEC(CsTGY10G0001989)基因的下调也在一定程度上影响其芽叶中叶绿素的生物合成。本研究结果为茶树品种的选育及其适制性研究提供一定理论参考。

Abstract  

Various genetic and biochemical characteristics exist in tea plant cultivars, and they largely determine production suitability and tea quality.  Here, we performed transcriptomic and metabolomic analyses of young shoots of seven tea cultivars and identified major regulatory transcription factors (TFs) for the characteristic metabolites in different cultivars based on weighted gene co-expression network analysis (WGCNA).  Phenotypically, we found that ‘Tieguanyin’ (TGY) and ‘Fujian Shuixian’ (FJSX), which are suitable for oolong tea, had higher catechin contents.  The metabolites of ‘Jinxuan’ (JX) were more prominent, especially the contents of phenolic acids, flavonoids, terpenes, and tannins, which were higher than those of the other six cultivars.  Moreover, ‘Fudingdabai’ (FDDB), which is suitable for white tea, was rich in amino acids, linolenic acid, and saccharides.  At the molecular level, hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HCT) (CsTGY12G0001876, and CsTGY06G0003042) led to the accumulation of chlorogenic acid in TGY.  The main reason for the higher l-ascorbic acid content in FJSX was the high expression levels of L-galactono-1,4-lactone hydrogenase (GalLDH) (CsTGY13G0000389) and Myo-inositol oxygenase (MIOX) (CsTGY14G0001769, and CsTGY14G0001770), which were regulated by WRKY (CsTGY11G0001197).  Furthermore, FDDB, ‘Longjing 43’ (LJ43), ‘Shuchazao’ (SCZ)  and ‘Baihaozao’ (BHZ) had higher free fatty acid contents, among which MYB (CsTGY14G0002344) may be a hub gene for the regulation of palmitoleic acid accumulation.  More importantly, we found that the shoots of TGY were green with purple, mainly due to the accumulation of anthocyanins and the downregulation of the Mg-protoporphyrin IX nonomethyl ester cyclase (MPEC) (CsTGY10G0001989) gene that affects chlorophyll synthesis.  These results will provide a theoretical reference for tea cultivar breeding and suitability.

Keywords:  Camellia sinensis        transcriptomics        metabolomics        WGCNA  
Received: 06 July 2022   Accepted: 26 September 2022
Fund: This work was supported by the Major Special Project of Scientific and Technological Innovation on Anxi Tea, China (AX2021001), the Fujian Agriculture and Forestry University Construction Project for Technological Innovation and Service System of Tea Industry Chain, China (K1520005A01), the earmarked fund for China Agriculture Research System (CARS-19), and the fund for Excellent Master’s Dissertations of Fujian Agriculture and Forestry University, China (1122YS01007).
About author:  GAO Ting, E-mail: 13044550495@163.com; #Correspondence YE Nai-xing, E-mail: ynxtea@126.com; WANG Peng-jie, E-mail: wpjtea@163.com

Cite this article: 

GAO Ting, HOU Bing-hao, SHAO Shu-xian, XU Meng-ting, ZHENG Yu-cheng, JIN Shan, WANG Peng-jie, YE Nai-xing. 2023. Differential metabolites and their transcriptional regulation in seven major tea cultivars (Camellia sinensis) in China. Journal of Integrative Agriculture, 22(11): 3346-3363.

Alcazar A, Ballesteros O, Jurado J M, Pablos F, Martin M J, Vilches J L, Navalon A. 2007. Differentiation of green, white, black, Oolong, and Pu-erh teas according to their free amino acids content. Journal of Agricultural and Food Chemistry55, 5960–5965.

Chaowuttikul C, Palanuvej C, Ruangrungsi N. 2017. Pharmacognostic specification, chlorogenic acid content, and in vitro antioxidant activities of Lonicera japonica flowering bud. Pharmacognosy Research9, 128–132.

Chaturvedula V S P, Prakash I. 2011. The aroma, taste, color and bioactive constituents of tea. Plants Research5, 2110–2124.

Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant13, 1194–1202.

Chen D, Sun Z, Gao J J, Peng J K, Wang Z, Zhao Y, Lin Z, Dai W D. 2022. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars (Camellia sinensis var. Sinensis) with different manufacturing suitabilities. Food Chemistry377, 131976.

Chen X M, Shao S X, Yang R X, Gu M Y, Wang P, Zhao F, Ye N. 2021. Identification of co-expressed genes related to theacrine synthesis in tea flowers at different developmental stages. International Journal of Molecular Sciences22, 13394.

Chen X J, Wang P J, Zheng Y C, Gu M Y, Lin X Y, Wang S Y, Jin S, Ye N X. 2020. Comparison of metabolome and transcriptome of flavonoid biosynthesis pathway in a purple-leaf tea germplasm Jinmingzao and a green-leaf tea germplasm Huangdan reveals their relationship with genetic mechanisms of color formation. International Journal of Molecular Sciences21, 4167.

Chen Y J, Kuo P C, Yang M L, Li F Y, Jason T C T. 2013. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Research International53, 732–743.

Cui H P, Yu J Y, Xia S Q, Duhoranimana E, Huang Q R, Zhang X M. 2019. Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine. Food Chemistry271, 47–53.

Duan S W, Jin C Y, Li D, Gao C H, Qi S H, Liu K G, Hai J B, Ma H L, Chen M X. 2017. MYB76 inhibits seed fatty acid accumulation in ArabidopsisFrontiers in Plant Science8, 226.

Eastmond P J. 2004. Cloning and characterization of the acid lipase from castor beans. Journal of Biological Chemistry279, 45540–45545.

Fan F Y, Huang C S, Tong Y L, Guo H W, Zhou S J, Ye J H, Gong S Y. 2021. Widely targeted metabolomics analysis of white peony teas with different storage time and association with sensory attributes. Food Chemistry362, 130257.

Fang Z T, Yang W T, Li C Y, Li D, Dong J J, Zhao D, Xu H R, Ye J H, Zheng X Q, Liang Y R, Lu J L. 2021. Accumulation pattern of catechins and flavonol glycosides in different varieties and cultivars of tea plant in China. Journal of Food Composition and Analysis97, 103772.

Govindasamy K, Selvaraj V, Ramaswamy S S K, Subramanian M. 2011. Impact of genotype, seasons and manufacturing process on the activities of peptidase and lipoxygenase in tea. European Food Research and Technology232, 335–341.

Joaquı́n J S, John B O. 2002. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Archives of Biochemistry and Biophysics403, 25–34.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. 2013. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology14, 1–3.

Kohl M, Wiese S, Warscheid B. 2011. Cytoscape: Software for visualization and analysis of biological networks. Methods in Molecular Biology696, 291–303.

Langfelder P, Horvath S. 2008. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics9, 1–13.

Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology57, 405–430.

Li C F, Ma J Q, Huang D J, Ma C L, Jin J Q, Yao M Z, Chen L. 2018. Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry66, 2040–2048.

Li C F, Zhu Y, Yu Y, Zhao Q Y, Wang S J, Wang X C, Yao M Z, Luo D, Li X, Chen L, Yang Y Y. 2015. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics16, 560.

Li P L, Dai W D, Lu M L, Xie D C, Tan J F, Yang C, Zhu Y, Lv H P, Peng Q H, Zhang Y, Guo L, Ni D J, Lin Z. 2018. Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities. Journal of the Science of Food and Agriculture98, 1153–1161.

Li X, Liu G J, Zhang W, Zhou Y L, Ling T J, Wan X C, Bao G H. 2018. Novel flavoalkaloids from white tea with inhibitory activity against the formation of advanced glycation end products. Journal of Agricultural and Food Chemistry66, 4621–4629.

Lin C H, Shen Y A, Hung P H, Yu Y B, Chen Y J. 2012. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complementary and Alternative Medicine12, 201.

Lin X Y, Chen X J, Wang P J, Zheng Y C, Guo Y C, Hong Y P, Yang R X, Ye N X. 2021. Metabolite profiling in albino tea mutant Camellia sinensis ‘Fuyun 6’ using LC–ESI–MS/MS. Trees36, 261–272.

Lin Y, Yu W T, Zhou L, Fan X J, Wang F Q, Wang P J, Fang W P, Cai C P, Ye N X. 2020. Genetic diversity of oolong tea (Camellia sinensis) germplasms based on the nanofluidic array of single-nucleotide polymorphism (SNP) markers. Tree Genetics & Genomes16, 1–14.

Liu H H, Zheng C C. 2008. MPEC: An important gene in the chlorophyll biosynthesis pathway in photosynthetic organisms. Photosynthetica46, 321–328.

Liu Q L, Zhong M, Li S, Pan Y Z, Jiang B B, Jia Y, Zhang H Q. 2013. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiology and Biochemistry69, 27–33.

Liu Y, Yang T Y, Lin Z K, Gu B J, Xing C H, Zhao L Y, Dong H Z, Gao J Z, Xie Z H, Zhang S L, Huang X S. 2019. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation. Plant Biotechnology Journal, 17, 1770–1787.

Liu Y H, Yu L, Wang R Z. 2011. Level of ascorbic acid in transgenic rice for l-galactono-1,4-lactone dehydrogenase overexpressing or suppressed is associated with plant growth and seed set. Acta Physiologiae Plantarum33, 1353–1363.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Ma C H, Tan C, Li W L, Chen L B, Wang Y R, Chen X. 2013. Identification of the different aroma compounds between conventional and freeze dried Wuyi rock tea (Dangui) using headspace solid phase microextraction. Food Science and Technology Research19, 805–811.

Maritim T K, Seth R, Parmar R, Sharma R K. 2021. Multiple-genotypes transcriptional analysis revealed candidates genes and nucleotide variants for improvement of quality characteristics in tea (Camellia sinensis (L.) O. Kuntze). Genomics113, 305–316.

Mellidou I, Koukounaras A, Kostas S, Patelou E, Kanellis A K. 2021. Regulation of vitamin C accumulation for improved tomato fruit quality and alleviation of abiotic stress. Genes (Basel), 12, 694.

Munir S, Mumtaz M A, Ahiakpa J K, Liu G Z, Chen W F, Zhou G L, Zheng W, Ye Z B, Zhang Y Y. 2020. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics21, 1–15.

Radzio J A, Lorence A, Chevone B I, Nessler C L. 2003. L-gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Molecular Biology53, 837–844.

Ramaswamy R, Ramaswamy P. 2000. Lipid occurrence, distribution and degradation to flavour volatiles during tea processing. Food Chemistry68, 7–13.

Toguri T, Umemoto N, Kobayashi O, Ohtani T. 1993. Activation of anthocyanin synthesis genes by white light in eggplant hypocotyl tissues, and identification of an inducible P-450 cDNA. Plant Molecular Biology23, 933–946.

Wang H J, Cao X L, Yuan Z F, Guo G Y. 2021. Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations. Food Chemistry352, 129359.

Wang P J, Chen S, Gu M Y, Chen X M, Chen X J, Yang J F, Zhao F, Ye N X. 2020a. Exploration of the effects of different blue LED light intensities on flavonoid and lipid metabolism in tea plants via transcriptomics and metabolomics. International Journal of Molecular Sciences21, 4606.

Wang P J, Gu M Y, Shao S X, Chen X M, Hou B H, Ye N X, Zhang X. 2022. Changes in non-volatile and volatile metabolites associated with heterosis in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry70, 3067–3078.

Wang P J, Guo Y C, Chen X J, Zheng Y C, Sun Y, Yang J F, Ye N X. 2019. Genome-wide identification of WOX genes and their expression patterns under different hormone and abiotic stress treatments in tea plant (Camellia sinensis). Trees33, 1129–1142.

Wang P J, Jin S, Chen X J, Wu L, Zheng Y C, Yue C, Guo Y Q, Zhang X T, Yang J F, Ye N X. 2021a. Chromatin accessibility and translational landscapes of tea plants under chilling stress. Horticulture Research8, 96.

Wang P J, Yu J X, Jin S, Chen S, Yue C, Wang W L, Gao S L, Cao H L, Zheng Y C, Gu M Y, Chen X J, Sun Y, Guo Y Q, Yang J F, Zhang X T, Ye N X. 2021b. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research8, 107.

Wang P J, Zheng Y C, Guo Y Q, Liu B S, Jin S, Liu S Z, Zhao F, Chen X J, Sun Y, Yang J F, Ye N X. 2020b. Widely targeted metabolomic and transcriptomic analyses of a novel albino tea mutant of “Rougui”. Forests11, 229.

Wheeler G L, Jones M A, Smirnoff N. 1998. The biosynthetic pathway of vitamin C in higher plants. Nature393, 365–369.

Wu L Y, Huang X J, Liu S R, Liu J H, Guo Y Q, Sun Y, Lin J K, Guo Y L, Wei S. 2020. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Food Chemistry310, 125941.

Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science20, 176–185.

Yu G H, Wang L G, Han Y Y, He Q Y. 2012. ClusterProfiler: An R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology16, 284–287.

Zhang J R, Wu M L, Li W D, Bai G B. 2017. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonicaPlant Physiology and Biochemistry121, 74–79.

Zhang W Y, Luo C, Scossa F, Zhang Q H, Usadel B, Fernie A R, Mei H W, Wen W W. 2021. A phased genome based on single sperm sequencing reveals crossover pattern and complex relatedness in tea plants. Plant Journal105, 197–208.

Zhang X T, Chen S, Shi L Q, Gong D P, Zhang S C, Zhao Q, Zhan D L, Vasseur L, Wang Y B, Yu J X, Liao Z Y, Xu X D, Qi R, Wang W L, Ma Y R, Wang P J, Ye N X, Ma D N, Shi Y, Wang H F, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensisNature Genetics53, 1250–1259.

Zheng C, Ma J Q, Chen J D, Ma C L, Chen W, Yao M Z, Chen L. 2019. Gene coexpression networks reveal key drivers of flavonoid variation in eleven tea cultivars (Camellia sinensis). Journal of Agricultural and Food Chemistry67, 9967–9978.

Zheng C, Ma J Q, Ma C L, Yao M Z, Chen J D, Chen L. 2020. Identifying conserved functional gene modules underlying the dynamic regulation of tea plant development and secondary metabolism. Journal of Agricultural and Food Chemistry68, 11026–11037.

Zheng Y C, Wang P J, Chen X J, Yue C, Guo Y Q, Yang J F, Sun Y, Ye N X. 2021. Integrated transcriptomics and metabolomics provide novel insight into changes in specialized metabolites in an albino tea cultivar (Camellia sinensis (L.) O. Kuntz). Plant Physiology and Biochemistry160, 27–36.

Zhou P, Zhao F, Chen M J, Ye N X, Lin Q, Ouyang L Q, Cai X M, Meng P, Gong X D, Wang Y. 2019. De

No related articles found!
No Suggested Reading articles found!