|
|
|
Functional analysis of MdSUT2.1, a plasma membrane sucrose transporter from apple |
ZHANG Bo1, 2, FAN Wen-min1, ZHU Zhen-zhen1, 2, WANG Ying1, ZHAO Zheng-yang1, 2#
|
1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
2 Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, P.R.China
|
|
|
摘要
糖含量决定着苹果甜度,然而苹果果实中蔗糖积累的分子机制仍然难以捉摸。本文报道了蔗糖转运蛋白MdSUT2.1在苹果果实蔗糖积累调控中的作用。MdSUT2.1基因编码一种由612个氨基酸残基构成的蛋白质。当在烟叶原生质体中表达时,该蛋白质定位于细胞质膜。MdSUT2.1在果实中高表达并与果实发育过程中的蔗糖积累呈正相关。此外,MdSUT2.1的蔗糖转运活性通过酵母突变体的生长互补实验得到验证。与WT相比,在苹果和番茄中过表达MdSUT2.1导致蔗糖、果糖和葡萄糖含量显着增加。进一步分析表明,与WT相比,过表达MdSUT2.1的苹果和番茄中糖代谢和转运相关基因SUSYs、NINVs、FRKs、HXKs和TSTs的表达水平均提高。与液泡膜糖转运蛋白MdTST1和MdTST2不同,MdSUT2.1的启动子不能被外源糖诱导。这些发现为苹果果实糖分积累的分子机制提供了有价值的见解。
Abstract
Sugar content is a determinant of apple (Malus×domestica Borkh.) sweetness. However, the molecular mechanism underlying sucrose accumulation in apple fruit remains elusive. Herein, this study reported the role of the sucrose transporter MdSUT2.1 in the regulation of sucrose accumulation in apples. The MdSUT2.1 gene encoded a protein with 612 amino acid residues that could be localized at the plasma membrane when expressed in tobacco leaf protoplasts. MdSUT2.1 was highly expressed in fruit and was positively correlated with sucrose accumulation during apple fruit development. Moreover, complementary growth assays in a yeast mutant validated the sucrose transport activity of MdSUT2.1. MdSUT2.1 overexpression in apples and tomatoes resulted in significant increases in sucrose, fructose, and glucose contents compared to the wild type (WT). Further analysis revealed that the expression levels of sugar metabolism- and transport-related genes SUSYs, NINVs, FRKs, HXKs, and TSTs increased in apples and tomatoes with MdSUT2.1 overexpression compared to WT. Finally, unlike the tonoplast sugar transporters MdTST1 and MdTST2, the promoter of MdSUT2.1 was not induced by exogenous sugars. These findings provide valuable insights into the molecular mechanism underlying sugar accumulation in apples.
|
Received: 09 May 2022
Accepted: 26 July 2022
|
Fund: This work was supported by the earmarked fund for China Agriculture Research System (CARS-27). |
About author: ZHANG Bo, E-mail: zhangboywzq@163.com; #Correspondence ZHAO Zheng-yang, Tel: +86-29-87082922, E-mail: zhaozy@nwsuaf.edu.cn |
Cite this article:
ZHANG Bo, FAN Wen-min, ZHU Zhen-zhen, WANG Ying, ZHAO Zheng-yang.
2023.
Functional analysis of MdSUT2.1, a plasma membrane sucrose transporter from apple. Journal of Integrative Agriculture, 22(3): 762-775.
|
Aluko O O, Li C, Wang Q, Liu H. 2021. Sucrose utilization for improved crop yields: A review article. International Journal of Molecular Sciences, 22, 4704.
Aoki N, Hirose T, Scofield G N, Whitfeld P R, Furbank R T. 2003. The sucrose transporter gene family in rice. Plant and Cell Physiology, 44, 223–232.
Archbold D D. 1999. Carbohydrate availability modifies sorbitol dehydrogenase activity of apple fruit. Physiologia Plantarum, 105, 391–395.
Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. 2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 12, 1153–1164.
Barth I, Meyer S, Sauer N. 2003. PmSUC3: Characterization of a SUT2/SUC3-type sucrose transporter from Plantago major. Plant Cell, 15, 1375–1385.
Berüter J, Studer Feusi M E. 1995. Comparison of sorbitol transport in excised tissue discs and cortex tissue of intact apple fruit. Journal of Plant Physiology, 146, 95–102.
Braun D M, Slewinski T L. 2009. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiology, 149, 71–81.
Burkle L, Hibberd J M, Quick W P, Kuhn C, Hirner B, Frommer W B. 1998. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiology, 118, 59–68.
Chen T, Zhang Z, Li B, Qin G, Tian S. 2021. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH, 2, 330–340.
Cheng J, Wen S, Xiao S, Lu B, Ma M, Bie Z. 2018. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. Journal of Experimental Botany, 69, 511–523.
Chincinska I A, Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C. 2008. Sucrose transporter StSUT4 from potato affects flowering, tuberization, shade avoidance response. Plant Physiology, 146, 515–528.
Dasgupta K, Khadilkar A S, Sulpice R, Pant B, Scheible W R, Fisahn J, Stitt M, Ayre B G. 2014. Expression of sucrose transporter cDNAs specifically in companion cells enhances phloem loading and long-distance transport of sucrose but leads to an inhibition of growth and the perception of a phosphate limitation. Plant Physiology, 165, 715–731.
Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. 2018. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 247, 587–611.
Eom J S, Cho J I, Reinders A, Lee S W, Yoo Y, Tuan P Q, Choi S B, Bang G, Park Y I, Cho M H, Bhoo S H, An G, Hahn T R, Ward J M, Jeon J S. 2011. Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiology, 157, 109–119.
Flemetakis E, Dimou M, Cotzur D, Efrose R C, Aivalakis G, Colebatch G, Udvardi M, Katinakis P. 2003. A sucrose transporter, LjSUT4, is up-regulated during Lotus japonicus nodule development. Journal of Experimental Botany, 54, 1789–1791.
Gahrtz M, Schmelzer E, Stolz J, Sauer N. 1996. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development. Plant Journal, 9, 93–100.
Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. 2000. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proceedings of the National Academy of Sciences of the United States of America, 97, 13979–13984.
Grimes H D, Overvoorde P J. 1996. Functional characterization of sucrose binding protein-mediated sucrose uptake in yeast. Journal of Experimental Botany, 47, 1217–1222.
Hackel A, Schauer N, Carrari F, Fernie A R, Grimm B, Kühn C. 2006. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant Journal, 45, 180–192.
Hedrich R, Sauer N, Neuhaus H E. 2015. Sugar transport across the plant vacuolar membrane: Nature and regulation of carrier proteins. Current Opinion in Plant Biology, 25, 63–70.
Hussain S B, Guo L X, Shi C Y, Khan M A, Bai Y X, Du W, Liu Y Z. 2020. Assessment of sugar and sugar accumulation-related gene expression profiles reveal new insight into the formation of low sugar accumulation trait in a sweet orange (Citrus sinensis) bud mutant. Molecular Biology Reports, 47, 2781–2791.
Jung B, Ludewig F, Schulz A, Meißner G, Wöstefeld N, Flügge U I, Pommerrenig B, Wirsching P, Sauer N, Koch W, Sommer F, Mühlhaus T, Schroda M, Cuin T A, Graus D, Marten I, Hedrich R, Neuhaus H E. 2015. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots. Nature Plants, 1, 14001.
Kühn C, Franceschi V R, Schulz A, Lemoine R, Frommer W B. 1997. Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science, 275, 1298–1300.
Kühn C, Grof C P. 2010. Sucrose transporters of higher plants. Current Opinion in Plant Biology, 13, 288–298.
Lalonde S, Boles E, Hellmann H, Barker L, Patrick J W, Frommer W B, Ward J M. 1999. The dual function of sugar carriers. Transport and sugar sensing. Plant Cell, 11, 707–726.
Lalonde S, Frommer W B. 2012. SUT sucrose and MST monosaccharide transporter inventory of the Selaginella genome. Frontiers in Plant Science, 3, 24.
Li B, Zhu L, Jin Y, Peng Y, Feng Z, Yang N, Ma F, Ma B, Li M. 2022. Effects of two apple tonoplast sugar transporters, MdTST1 and MdTST2, on the accumulation of sugar. Scientia Horticulturae, 293, 110719.
Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE, 7, e33055.
Li T, Jiang Z, Zhang L, Tan D, Wei Y, Yuan H, Li T, Wang A. 2016. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription. Plant Journal, 88, 735–748.
Li X, Guo W, Li J, Yue P, Bu H, Jiang J, Liu W, Xu Y, Yuan H, Li T, Wang A. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology, 182, 2035–2046.
Liu Y, Zhang X, Zhao Z. 2013. Effects of fruit bagging on anthocyanins, sugars, organic acids, and color properties of ‘Granny Smith’ and ‘Golden Delicious’ during fruit maturation. European Food Research and Technology, 236, 329–339.
Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Han Y, Wu B. 2015. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry, 172, 86–91.
Ma Q J, Sun M H, Liu Y J, Lu J, Hu D G, Hao Y J. 2016. Molecular cloning and functional characterization of the apple sucrose transporter gene MdSUT2. Plant Physiology and Biochemistry, 109, 442–451.
Ma Q J, Sun M H, Lu J, Kang H, You C X, Hao Y J. 2019. An apple sucrose transporter MdSUT2.2 is a phosphorylation target for protein kinase MdCIPK22 in response to drought. Plant Biotechnology Journal, 17, 625–637.
Ma Q J, Sun M H, Lu J, Zhu X P, Gao W S, Hao Y J. 2017. Ectopic expression of apple MdSUT2 gene influences development and abiotic stress resistance in tomato. Scientia Horticulturae, 220, 259–266.
Mathan J, Singh A, Ranjan A. 2021. Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 72, 4355–4372.
Meyer S, Lauterbach C, Niedermeier M, Barth I, Sjolund R D, Sauer N. 2004. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues. Plant Physiology, 134, 684–693.
Meyer S, Melzer M, Truernit E, Hümmer C, Besenbeck R, Stadler R, Sauer N. 2000. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant Journal, 24, 869–882.
Milne R J, Byrt C S, Patrick J W, Grof C P. 2013. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Frontiers in Plant Science, 4, 223.
Milne R J, Grof C P, Patrick J W. 2018. Mechanisms of phloem unloading: Shaped by cellular pathways, their conductances and sink function. Current Opinion in Plant Biology, 43, 8–15.
Nguyen-Quoc B, Foyer C H. 2001. A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. Journal of Experimental Botany, 52, 881–889.
Ossowski S, Schwab R, Weigel D. 2008. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant Journal, 53, 674–690.
Payyavula R S, Tay K H, Tsai C J, Harding S A. 2011. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant Journal, 65, 757–770.
Peng D, Gu X, Xue L J, Leebens-Mack J H, Tsai C J. 2014. Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots. Frontiers in Plant Science, 5, 615.
Peng Q, Cai Y, Lai E, Nakamura M, Liao L, Zheng B, Ogutu C, Cherono S, Han Y. 2020a. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple. BMC Plant Biology, 20, 191.
Peng Q, Wang L, Ogutu C, Liu J, Liu L, Mollah M D A, Han Y. 2020b. Functional analysis reveals the regulatory role of PpTST1 encoding tonoplast sugar transporter in sugar accumulation of peach fruit. International Journal of Molecular Sciences, 21, 1112.
Reinders A, Sivitz A B, Ward J M. 2012. Evolution of plant sucrose uptake transporters. Frontiers in Plant Science, 3, 22.
Riesmeier J W, Willmitzer L, Frommer W B. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. The EMBO Journal, 11, 4705–4713.
Riesmeier J W, Willmitzer L, Frommer W B. 1994. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. The EMBO Journal, 13, 1–7.
Rottmann T M, Fritz C, Lauter A, Schneider S, Fischer C, Danzberger N, Dietrich P, Sauer N, Stadler R. 2018. Protoplast-esculin assay as a new method to assay plant sucrose transporters: Characterization of AtSUC6 and AtSUC7 sucrose uptake activity in Arabidopsis Col-0 ecotype. Frontiers in Plant Science, 9, 430.
Sauer N. 2007. Molecular physiology of higher plant sucrose transporters. FEBS Letters, 581, 2309–2317.
Schneider S, Hulpke S, Schulz A, Yaron I, Höll J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. 2012. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biology, 14, 325–336.
Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R. 2011. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant Journal, 68, 129–136.
Sivitz A B, Reinders A, Johnson M E, Krentz A D, Grof C P, Perroux J M, Ward J M. 2007. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiology, 143, 188–198.
Slewinski T L, Garg A, Johal G S, Braun D M. 2010. Maize SUT1 functions in phloem loading. Plant Signaling & Behavior, 5, 687–690.
Sparkes I A, Runions J, Kearns A, Hawes C. 2006. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 1, 2019–2025.
Sun A, Dai Y, Zhang X, Li C, Meng K, Xu H, Wei X, Xiao G, Ouwerkerk P B, Wang M, Zhu Z. 2011. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT5Z and OsSUT2M. Journal of Integrative Plant Biology, 53, 586–595.
Sun H J, Uchii S, Watanabe S, Ezura H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant and Cell Physiology, 47, 426–431.
Weber H, Borisjuk L, Heim U, Sauer N, Wobus U. 1997. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell, 9, 895–908.
Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U. 2000. Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant Journal, 21, 455–467.
Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus H E. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell, 18, 3476–3490.
Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. Journal of Biological Chemistry, 285, 1138–1146.
Yan Z X, Yang H Y, Zhang C H, Wu W L, Li W L. 2021. Functional analysis of the blackberry sucrose transporter gene RuSUT2. Russian Journal of Plant Physiology, 68, 246–253.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.
Yoon J, Cho L H, Tun W, Jeon J S, An G. 2021. Sucrose signaling in higher plants. Plant Science, 302, 110703.
Zhang B, Zhu Z Z, Qu D, Wang B C, Hao N N, Yang Y Z, Yang H J, Zhao Z Y. 2021. MdBBX21, a B-box protein, positively regulates light-induced anthocyanin accumulation in apple peel. Frontiers in Plant Science, 12, 774446.
Zhu L, Li B, Wu L, Li H, Wang Z, Wei X, Ma B, Zhang Y, Ma F, Ruan Y L, Li M. 2021. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022788118.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|