Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3256-3268    DOI: 10.1016/j.jia.2023.07.017
Special Focus: Germplasm and Molecular Breeding in Horticultural Crops Advanced Online Publication | Current Issue | Archive | Adv Search |
The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears

WEI Wei-lin1, JIANG Fu-dong2, LIU Hai-nan3, SUN Man-yi1, LI Qing-yu2, CHANG Wen-jing1, LI Yuan-jun2, LI Jia-ming1, WU Jun1#

1 College of Horticulture/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Yantai Academy of Agricultural Sciences, Yantai 264000, P.R.China
3 College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

梨果皮的红色主要是由花青苷合成积累导致,以巴梨‘Bartlett’, BL)和红巴梨‘Max Red Bartlett’, MRB)为代表的芽变品种是研究梨果皮花青苷合成积累分子机制的理想材料。虽然早前的研究已通过遗传图谱定位了红巴梨果皮色泽的数量性状基因座(QTL),但是决定色泽突变的关键基因及调控机制尚不明确。因此,本研究以巴梨红巴梨为研究试材,通过对其果皮组织的转录组和DNA甲基化差异比较分析,发现红巴梨PcHY5 DNA甲基化水平低于巴梨,且PcHY5基因的表达量高于巴梨,由此推测PcHY5 DNA甲基化水平可能与巴梨红巴梨果皮颜色差异有关,并利用双荧光素酶试验证实了PcHY5不仅能激活花青苷合成相关转录因子PcMYB10PcMYB114,也能激活花青苷合成基因PcUFGT和转运基因PcGST,说明PcHY5不仅能调控花青苷的合成,还调控了花青苷的转运。进一步,对巴梨红巴梨PcHY5的关键差异甲基化位点进行了分析,发现红巴梨PcHY5内含子区域的低甲基化水平与果皮红色形成显著相关,而巴梨同一位点的高甲基化水平与果皮绿色显著相关。因此,基于巴梨红巴梨PcHY5基因差异表达和差异甲基化,结合基因的调控功能验证,推测红巴梨PcHY5 通过DNA低甲基化水平促进其自身基因表达,并调控花青苷合成和转运相关基因的表达,从而促进果皮着色。



Abstract  

The red coloring of pear fruits is mainly caused by anthocyanin accumulation.  Red sport, represented by the green pear cultivar ‘Bartlett’ (BL) and the red-skinned derivative ‘Max Red Bartlett’ (MRB), is an ideal material for studying the molecular mechanism of anthocyanin accumulation in pear.  Genetic analysis has previously revealed a quantitative trait locus (QTL) associated with red skin color in MRB.  However, the key gene in the QTL and the associated regulatory mechanism remain unknown.  In the present study, transcriptomic and methylomic analyses were performed using pear skin for comparisons between BL and MRB.  These analyses revealed differential PcHY5 DNA methylation levels between the two cultivars; MRB had lower PcHY5 methylation than BL during fruit development, and PcHY5 was more highly expressed in MRB than in BL.  These results indicated that PcHY5 is involved in the variations in skin color between BL and MRB.  We further used dual luciferase assays to verify that PcHY5 activates the promoters of the anthocyanin biosynthesis and transport genes PcUFGT, PcGST, PcMYB10 and PcMYB114, confirming that PcHY5 not only regulates anthocyanin biosynthesis but also anthocyanin transport.  Furthermore, we analyzed a key differentially methylated site between MRB and BL, and found that it was located in an intronic region of PcHY5.  The lower methylation levels in this PcHY5 intron in MRB were associated with red fruit color during development, whereas the higher methylation levels at the same site in BL were associated with green fruit color.  Based on the differential expression and methylation patterns in PcHY5 and gene functional verification, we hypothesize that PcHY5, which is regulated by methylation levels, affects anthocyanin biosynthesis and transport to cause the variations in skin color between BL and MRB.

Keywords:  pear        PcHY5        DNA methylation        anthocyanin        biosynthesis and transport  
Received: 21 March 2023   Accepted: 02 June 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (31820103012), the earmarked fund for China Agriculture Research System (CARS-28), and the Earmarked Fund for Jiangsu Agricultural Industry Technology System (JATS[2022]454).

About author:  WEI Wei-lin, E-mail: 2017204002@njau.edu.cn; #Correspondence WU Jun, Tel: +86-25-84396485, E-mail: wujun@njau.edu.cn

Cite this article: 

WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun. 2023. The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears. Journal of Integrative Agriculture, 22(11): 3256-3268.

Alappat B, Alappat J. 2020. Anthocyanin pigments: Beyond aesthetics. Molecules25, 5500.

An F, Zhang K, Zhang L K, Li X, Chen S M, Wang H S, Cheng F. 2022. Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleraceaJournal of Integrative Agriculture21, 1620–1632.

An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research4, 17023.

Ayvaz H, Cabaroglu T, Akyildiz A, Pala C U, Temizkan R, Agcam E, Ayvaz Z, Durazzo A, Lucarini M, Direito R, Diaconeasa Z. 2022. Anthocyanins: Metabolic digestion, bioavailability, therapeutic effects, current pharmaceutical/industrial use, and innovation potential. Antioxidants (Basel), 12, 48.

Azuma A, Kobayashi S. 2022. Demethylation of the 3´ LTR region of retrotransposon in VvMYBA1BEN allele enhances anthocyanin biosynthesis in berry skin and flesh in ‘Brazil’ grape. Plant Science322, 111341.

Bai S L, Tao R Y, Tang Y X, Yin L, Ma Y J, Ni J B, Yan X H, Yang Q S, Wu Z Y, Zeng Y L, Teng Y W. 2019a. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal17, 1985–1997.

Bai S L, Tao R Y, Yin L, Ni J B, Yang Q S, Yan X H, Yang F, Guo X P, Li H X, Teng Y W. 2019b. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal100, 1208–1223.

Benetatos L, Vartholomatos G. 2018. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cellular and Molecular Life Sciences75, 1999–2009.

Bewick A J, Niederhuth C E, Ji L, Rohr N A, Griffin P T, Leebens-Mack J, Schmitz R J. 2017. The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants. Genome Biology18, 65.

Bu H D, Sun X H, Yue P T, Qiao J L, Sun J M, Wang A D, Yuan H, Yu W Q. 2022. The MdAux/IAA2 transcription repressor regulates cell and fruit size in apple fruit. International Journal of Molecular Sciences23, 9454.

Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, Johansson H. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants6, 921–928.

Chakraborty M, Gangappa S N, Maurya J P, Sethi V, Srivastava A K, Singh A, Dutta S, Ojha M, Gupta N, Sengupta M, Ram H, Chattopadhyay S. 2019. Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development. The Plant Journal99, 1080–1097.

Chang C S, Li Y H, Chen L T, Chen W C, Hsieh W P, Shin J, Jane W N, Chou S J, Choi G, Hu J M, Somerville S, Wu S H. 2008. LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. The Plant Journal54, 205–219.

Chen Q M, Li Q H, Qiao X, Yin H, Zhang S L. 2020. Genome-wide identification of lysin motif containing protein family genes in eight rosaceae species, and expression analysis in response to pathogenic fungus Botryosphaeria dothidea in Chinese white pear. BMC Genomics21, 612.

Chen R, Yang C, Gao H, Shi C M, Zhang Z Y, Lu G Y, Shen X Y, Tang Y P, Li F, Lu Y E, Ouyang B. 2022. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. Theoretical and Applied Genetics135, 3455–3468.

Clermont P L, Parolia A, Liu H H, Helgason C D. 2016. DNA methylation at enhancer regions: Novel avenues for epigenetic biomarker development. Frontiers in Bioscience-Landmark21, 430–446.

Dai X N, Li Q Y, Jiang F D, Song Z Z, Tang X L, Su S Q, Yao R T, Yang H Y, Yang Y Q, Zhang H X, Li J Z. 2022. Transcriptome analysis of branches reveals candidate genes involved in anthocyanin biosynthesis of ‘Red Bartlett’ pear (Pyrus communis L.). Scientia Horticulturae305, 111392

Dondini L, Pierantoni L, Ancarani V, D’angelo M, Cho K H, Shin I S, Musacchi S, Kang S J, Sansavini S. 2008. The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breeding127, 524–526.

Dussi M C, Sugar D, Wrolstad R E. 1995. Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. Journal of the American Society for Horticultural Science120, 785–789.

El-Sharkawy I, Liang D, Xu K N. 2015. Transcriptome analysis of an apple (Malus× domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation. Journal of Experimental Botany66, 7359–7376.

Espley R V, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell21, 168–183.

Gangappa S N, Botto J F. 2016. The multifaceted roles of HY5 in plant growth and development. Molecular Plant9, 1353–1365.

Gao Y, Ge F F, Zhang R, Yin D Y, Zhao Y, Tang H, Zhang L, Yang L. 2021. PID: An integrative and comprehensive platform of plant intron. Computational Biology and Chemistry93, 107528.

Huang J Q, Zhang G, Li Y H, Lyu M J, Zhang H, Zhang N, Chen R. 2023. Integrative genomic and transcriptomic analyses of a bud sport mutant ‘Jinzao Wuhe’ with the phenotype of large berries in grapevines. PeerJ11, e14617.

Jeong S W, Das P K, Jeoung S C, Song J Y, Lee H K, Kim Y K, Kim W J, Park Y I, Yoo S D, Choi S B, Choi G, Park Y I. 2010. Ethylene suppression of sugar-induced anthocyanin pigmentation in ArabidopsisPlant Physiology154, 1514–1531.

Jiang S H, Chen M, He N B, Chen X L, Wang N, Sun Q G, Zhang T L, Xu H F, Fang H C, Wang Y C, Zhang Z Y, Wu S J, Chen X S. 2019. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research6, 40.

Jiang S H, Wang N, Chen M, Zhang R, Sun Q G, Xu H F, Zhang Z Y, Wang Y C, Sui X Q, Wang S F, Fang H C, Zuo W F, Su M Y, Zhang J, Fei Z J, Chen X S. 2020. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnology Journal18, 1736–1748.

Job N, Yadukrishnan P, Bursch K, Datta S, Johansson H. 2018. Two B-Box proteins regulate photomorphogenesis by oppositely modulating HY5 through their diverse C-terminal domains. Plant Physiology176, 2963–2976.

Kim D, Shivakumar M, Han S, Sinclair M S, Lee Y J, Zheng Y, Olopade O I, Kim D, Lee Y. 2018. Population-dependent intron retention and DNA methylation in breast cancer. Molecular Cancer Research16, 461–469.

Kohler C, Springer N. 2017. Plant epigenomics-deciphering the mechanisms of epigenetic inheritance and plasticity in plants. Genome Biology18, 132.

Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui M S, Grotewold E. 2014. Not all anthocyanins are born equal: distinct patterns induced by stress in ArabidopsisPlanta240, 931–940.

Kumar S, Kirk C, Deng C H, Wiedow C, Qin M, Espley R, Wu J, Brewer L. 2019. Fine-mapping and validation of the genomic region underpinning pear red skin colour. Horticulture Research6, 29.

Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van De Peer Y, Rouze P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research30, 325–327.

Liu H N, Su J, Zhu Y F, Yao G F, Allan A C, Ampomah-Dwamena C, Shu Q, Lin-Wang K, Zhang S L, Wu J. 2019. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research6, 134.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408.

Meng F L, Zhao H N, Zhu B, Zhang T, Yang M Y, Li Y, Han Y P, Jiang J M. 2021. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thalianaThe Plant Cell33, 1997–2014.

Niederhuth C E, Schmitz R J. 2017. Putting DNA methylation in context: From genomes to gene expression in plants. Biochimica et Biophysica Acta (Gene Regulatory Mechanisms), 1860, 149–156.

Ong-Abdullah M, Ordway J M, Jiang N, Ooi S E, Kok S Y, Sarpan N, Azimi N, Hashim A T, Ishak Z, Rosli S K, Malike F A, Bakar N A, Marjuni M, Abdullah N, Yaakub Z, Amiruddin M D, Nookiah R, Singh R, Low E T, Chan K L, et al. 2015. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature525, 533–537.

Ordonez R, Martinez-Calle N, Agirre X, Prosper F. 2019. DNA methylation of enhancer elements in myeloid neoplasms: think outside the promoters? Cancers (Basel), 11, 1424.

Ou C Q, Zhang X L, Wang F, Zhang L Y, Zhang Y J, Fang M, Wang J H, Wang J X, Jiang S L, Zhang Z H. 2020. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): a deletion in the PpBBX24 gene is associated with the red skin of pear. Horticulture Research7, 39.

Qiu Z K, Wang H J, Li D J, Yu B W, Hui Q L, Yan S S, Huang Z J, Cui X, Cao B H. 2019. Identification of candidate HY5-dependent and -independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology60, 643–656.

Reimer F C. 1951. A genetic bud mutation in the pear. Journal of Heredity42, 93–94.

Royo C, Torres-Perez R, Mauri N, Diestro N, Cabezas J A, Marchal C, Lacombe T, Ibanez J, Tornel M, Carreno J, Martinez-Zapater J M, Carbonell-Bejerano P. 2018. The major origin of seedless grapes is associated with a missense mutation in the MADS-Box gene VviAGL11Plant Physiology177, 1234–1253.

Shin D H, Choi M, Kim K, Bang G, Cho M, Choi S B, Choi G, Park Y I. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in ArabidopsisFEBS Letters587, 1543–1547.

Shin J, Park E, Choi G. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in ArabidopsisThe Plant Journal49, 981–994.

Shlyueva D, Stampfel G, Stark A. 2014. Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews Genetics15, 272–286.

Smemo S, Tena J J, Kim K H, Gamazon E R, Sakabe N J, Gomez-Marin C, Aneas I, Credidio F L, Sobreira D R, Wasserman N F, Lee J H, Puviindran V, Tam D, Shen M, Son J E, Vakili N A, Sung H K, Naranjo S, Acemel R D, Manzanares M, et al. 2014. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature507, 371–375.

Song Y H, Yoo C M, Hong A P, Kim S H, Jeong H J, Shin S Y, Kim H J, Yun D J, Lim C O, Bahk J D, Lee S Y, Nagao R T, Key J L, Hong J C. 2008. DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STF1 and LONG HYPOCOTYL5 proteins. Plant Physiology146, 1862–1877.

Song Z, Yan T, Liu J, Bian Y, Heng Y, Lin F, Jiang Y, Deng X W, Xu D. 2020. BBX28/BBX29, HY5 and BBX30/31 form a feedback loop to fine-tune photomorphogenic development. The Plant Journal104, 377–390.

Vandenbussche F, Habricot Y, Condiff A S, Maldiney R, Van Der Straeten D, Ahmad M. 2007. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thalianaThe Plant Journal49, 428–441.

Wang N Y, Li X T, Xu C Y, Lian R, Pan T F, Guo Z X, Yu Y, She W Q. 2022. Gene expression in the sugar metabolism between ‘Guanxi’ pummelo and its early-ripening mutant ‘Liuyuezao’. Scientia Horticulturae305, 111435.

Wang Y Y, Zhang X D, Zhao Y R, Yang J, He Y Y, Li G C, Ma W R, Huang X L, Su J. 2020. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiology and Biochemistry154, 665–674.

Wang Z G, Meng D, Wang A D, Li T L, Jiang S L, Cong P H, Li T Z. 2013. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology162, 885–896.

Weber B, Zicola J, Oka R, Stam M. 2016. Plant enhancers: A call for discovery. Trends in Plant Science21, 974–987.

Wu J, Wang Z W, Shi Z B, Zhang S, Ming R, Zhu S L, Khan M A, Tao S T, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K J, Huang X S, Wang Y T, Zhao X, Wu J Y, Deng C,.et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research23, 396–408.

Xu W J, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science20, 176–185.

Yang J F, Li B B, Shi W J, Gong Z Z, Chen L, Hou Z X. 2018. Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. Journal of Agricultural and Food Chemistry66, 10931–10942.

Yang M, Koo S I, Song W O, Chun O K. 2011. Food matrix affecting anthocyanin bioavailability: review. Current Medicinal Chemistry18, 291–300.

Yao G F, Ming M L, Allan A C, Gu C, Li L T, Wu X, Wang R Z, Chang Y J, Qi K J, Zhang S L, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal92, 437–451.

Zhang Z Y, Shi Y N, Ma Y C, Yang X F, Yin X R, Zhang Y Y, Xiao Y W, Liu W L, Li Y D, Li S J, Liu X F, Grierson D, Allan A C, Jiang G H, Chen K S. 2020. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal18, 2267–2279.

Zhao Y, Dong W Q, Zhu Y C, Allan A C, Lin-Wang K, Xu C J. 2020. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal18, 1284–1295.

Zheng X D, Li Y C, Ma C Q, Chen B Y, Sun Z J, Tian Y K, Wang C H. 2022. A mutation in the promoter of the arabinogalactan protein 7-like gene PcAGP7-1 affects cell morphogenesis and brassinolide content in pear (Pyrus communis L.) stems. The Plant Journal109, 47–63.

Zicola J, Liu L Y, Tanzler P, Turck F. 2019. Targeted DNA methylation represses two enhancers of FLOWERING LOCUS T in Arabidopsis thalianaNature Plants5, 300–307.

[1] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[2] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
No Suggested Reading articles found!