Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2995-3003    DOI: 10.1016/j.jia.2022.07.046
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Diamide derivatives containing a trifluoromethylpyridine skeleton: Design, synthesis, and insecticidal activity
XU Fang-zhou*, WANG Yan-yan*, GUO Sheng-xin, DAI A-li, WU Jian
State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering/Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education/Guizhou University, Guiyang 550025, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  双酰胺衍生物近年来在农药(特别是杀虫剂)的研究中被广泛关注。本文通过简单、环保的合成路线,设计、合成了一系列含有三氟甲基吡啶骨架的新型双酰胺衍生物,通过1H、19F和13C NMR以及HR-MS进行了确证。并测定了它们对小菜蛾(Plutella xylostella)和棉铃虫(Helicoverpa armigera)的杀虫活性,讨论了构效关系。部分化合物(D2、D5、D10、D21、D28、D29、D30和D33)在500 mg·L-1时对小菜蛾具有100%杀虫活性。其中,化合物D33在100 mg·L-1时对具有100%的杀虫活性,其LC50值(致死中浓度)为3.7 mg L-1,为该类化合物中最低值。分子对接结果表明,D33可嵌入鱼尼丁受体的活性口袋中,与商业杀虫剂氯虫苯甲酰胺类似,通过多个氢键与鱼尼丁受体相互作用。

Abstract  

Diamide derivatives are biologically active molecules that have been widely applied in recent years in research on pesticides, especially insecticides.  Using a simple and environmentally friendly scheme, a series of new diamide derivatives containing a trifluoromethylpyridine skeleton was designed, synthesized, and confirmed by 1H, 19F and 13C NMR, and HR-MS.  Their insecticidal activities against Plutella xylostella and Helicoverpa armigera were measured and the relationship between structure and activity was investigated.  Eight of the title compounds (D2, D5, D10, D21, D28, D29, D30 and D33) showed 100% activity against Pxylostella at 500 mg L–1.  One compound, D33, still showed 100% activity against Pxylostella at 100 mg L–1 and had the lowest LC50 (lethal concentration 50%, 3.7 mg L–1) among the synthesized compounds.  Molecular docking analysis revealed that D33 could be thoroughly embedded in the active pocket of the ryanodine receptor via hydrogen bonding in a manner similar to the commercial insecticide chlorantraniliprole.

Keywords:  diamide derivatives       trifluoromethylpyridine       synthesis       insecticidal activity       molecular docking  
Received: 31 August 2021   Accepted: 20 October 2021
Fund: his work was supported by the National Natural Science Foundation of China (21762012, 32072445 and 21562012), the Program of Introducing Talents to Chinese Universities (D20023) and the S&T Planning Project of Guizhou Province, China ([2017]1402 and [2017]5788).  
About author:  Correspondence WU Jian, Tel: +86-851-88292090, E-mail: wujian2691@126.com * These authors contributed equally to this study.

Cite this article: 

XU Fang-zhou, WANG Yan-yan, GUO Sheng-xin, DAI A-li, WU Jian. 2022. Diamide derivatives containing a trifluoromethylpyridine skeleton: Design, synthesis, and insecticidal activity. Journal of Integrative Agriculture, 21(10): 2995-3003.

Abbott W. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.
Abbott W. 1987. Abbott’s formula - A method of computing the effectiveness of an insecticide. Journal of the American Mosquito Control Assocaation, 3, 302–303. 
Ambethgar V. 2009. Potential of entomopathogenic fungi in insecticide resistance management (IRM): A review. Journal of  Biopesticides, 2, 177–193.
Burriss A, Edmunds A J F, Emery D. 2018. The importance of trifluoromethyl pyridines in crop protection. Pest Management Science, 74, 1228–1238.
Cittrarasu V, Kaliannan D, Dharman K, Maluventhen V, Easwaran M, Liu W C, Balasubramanian B, Arumugam M. 2021. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Scientifc Reports, 11, 1032.
Crickmore N. 2016. Bacillus thuringiensis resistance in Plutella - too many trees? Current Opinion in Insect Science, 15, 84–88.
David B S, Daniel C, Timothy R C. 2008. Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience, 8, 107–119.
Deepak P, Balamuralikrishnan B, Park S, Sowmiya R, Balasubramani G, Aiswarya D, Amutha V, Perumal P. 2019. Phytochemical profiling of marine red alga, Halymenia palmata and its bio-control effects against dengue vector, Aedes aegypti. South African Journal of Botany, 121, 257–266.
Fang Y, Shi W Q, Wu J T, Li Y Y, Xue J B, Zhang Y. 2019. Resistance to pyrethroid and organophosphate insecticides, and the geographical distribution and polymorphisms of target-site mutations in voltage-gated sodium channel and acetylcholinesterase 1 genes in Anopheles sinensis populations in Shanghai, China. Parasites Vectors, 12, 1–13.
Feng Q, Liu L, Xiong L X, Wang M Z, Li Y Q, Li Z M. 2010. Synthesis and insecticidal activities of novel anthranilic diamides containing modified N-pyridyl pyrazoles. Journal of Agricultural and Food Chemistry, 58, 12327–12336.
Fujii T, Sanada-Morimura S, Oe T, Ide M, Van Thanh D, Van Chien H, Van Tuong P, Loc P M, Cuong L Q, Liu Z W, Zhu Z R, Li J H, Wu G, Huang S H, Estoy G F, Sonoda S, Matsumura M. 2019. Long-term field insecticide susceptibility data and laboratory experiments reveal evidence for cross resistance to other neonicotinoids in the imidacloprid-resistant brown planthopper Nilaparvata lugens. Pest Management Science, 76, 480–486.
He F, Sun S, Tan H, Sun X, Qin C, Ji S M, Li X D, Zhang J W, Jiang X Y. 2019. Chlorantraniliprole against the black cutworm Agrotisi psilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Scientific Reports, 9, 1–17.
Jeschke P. 2009. The unique role of halogen substituents in the design of modern agrochemicals. Pest Management Science, 66, 10–27.
Kang W J, Koo H N, Jeong D H, Kim H K, Kim J, Kim G H. 2017. Functional and genetic characteristics of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Entomologial Research, 47, 394–403.
Karri P, Pabba J, Nandurka M, Purohit H, Verma A K, Venkatesha H M, Klausener A G M. 2018. Preparation of Pyrazolopyridine-Diamides as Insecticides. W.O. Patent, Application No. 2018IB60163, 2018-12-17.
Li B, Yang H B, Wang J F, Yu H B, Zhang H, Li Z N. 2008. Preparation of 1-Pyridylpyrazole–3-Carboxamide Derivatives as Pesticides. China Patent, Application No. 200810116198, 2008-07-07. (in Chinese) 
Li F Y, Wang Y H, Liu J B, Li Y X, Li Z M. 2019. Synthesis, insecticidal evaluation and mode of action of novel anthranilic diamide derivatives containing sulfur moiety as potential ryanodine receptor activators. Bioorganic and Medicinal Chemistry, 27, 769–776.
Lin L Y, Liu C, Qin J, Wang J, Dong S J, Chen W, He W Y, Gao Q Z, You M S, Yuchi Z G. 2017. Crystal structure of ryanodine receptor N-terminal domain from Plutella xylostella reveals two potential species-specific insecticide-targeting sites. Insect Biochemistry and Molecular Biology, 92, 73–83. 
Liu J B, Li F Y, Dong J Y, Li Y X, Zhang X L, Wang Y H, Xiong L X, Li Z M. 2019. Anthranilic diamides derivatives as potential ryanodine receptor modulators: Synthesis, biological evaluation and structure activity relationship. Bioorganic and Medicinal Chemistry, 26, 3541–3550.
Liu J B, Li Y X, Zhang X L, Cheng D D, Wei W, Wu C C, Xie Y T, Xiong L X, Li Z M. 2017. Design, synthesis, biological evaluation and SARs of novel anthranilic diamide derivatives containing amide, carbamate, urea, and thiourea moieties. Chinese Journal of Chemistry, 35, 368–374.
Liu M, Wang Y, Wangyang W Z, Liu F, Cui Y L, Duan Y S, Wang M, Liu S Z, Rui C H. 2010. Design, synthesis, and insecticidal activities of phthalamides containing a hydrazone substructure. Journal of Agricultural and Food Chemistry, 58, 6858–6863.
Luo D X, Guo S X, He F, Chen S H, Dai A L, Zhang R F, Wu J. 2020a. Design, synthesis, and bioactivity of α-ketoamide derivatives bearing a vanillin skeleton for crop diseases. Journal of Agricultural and Food Chemistry, 68, 7226–7234.
Luo D X, Guo S X, He F, Wang H Y, Xu F Z, Dai A L, Zhang R F, Wu J. 2020b. Novel anthranilic amide derivatives bearing the chiral thioether and trifluoromethylpyridine: Synthesis and bioactivity. Bioorganic & Medicinal Chemistry Letters, 30, 126902.
Luo J J, Weng Q F, Hu Q B. 2019. A Kind of Compound Composition for Preventing and Controlling Cruciferous Vegetable Pests. China Patent, Application No. 201910421182, 2019-08-09. (in Chinese)
Ma R F, Haji-Ghassemi O, Ma D, Jiang H, Lin L Y, Yao L, Samurkas A, Li Y X, Wang Y W, Cao P, Wu S A, Zhang Y, Murayama T, Moussian B, Van Petegem F V, Yuchi Z G. 2020. Structural basis for diamide modulation of ryanodine receptor. Nature Chemical Biology, 16, 1246–1254. 
Meenambigai K, Kokila R, Chandhirasekar K, Thendralmanikandan A, Kaliannan D, Ibrahim K S, Kumar S, Liu W C, Balasubramanian B, Nareshkumar A. 2021. Green synthesis of selenium nanoparticles mediated by Nilgirianthus ciliates leaf extracts for antimicrobial activity on foodborne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking. Biological Trace Element Research, 200, 2948–2962. 
Oerke E. 2005. Crop losses to pests. Journal of Agricultural Science, 144, 31–43. 
Ou J J, Zhu X K, Wang L, Xu C, Liu F, Ren L, Xu X B, Wang Y, Rui C H, Liu S. 2012. Synthesis and bioactivity study of 2-acylamino-substituted N´-benzylbenzohydrazide derivatives. Journal of Agricultural and Food Chemistry, 60, 10942–10951.
Paramasivam D, Balasubramanian B, Park S, Alagappan P, Kaul T, Liu W C, Pachiappan P. 2020. Phytochemical profiling and biological activity of Plectranthus amboinicus (Lour.) mediated by various solvent extracts against Aedes aegypti larvae and toxicity evaluation. Asian Pacific Journal of Tropical Medicine, 13, 494–502.
Peter M, Roger G H. 2004. The importance of fluorine in the life science industry. Chimia, 58, 93–99.
Potai A, Chandrakar G, Bhuarya N S. 2018. Effect of different doses of newer insecticides against sucking pests of okra. Journal of Pharmacognosy and Phytochemistry, 7, 1177–1179.
Qiao Z H, Zhang F W, Yao X F, Yu H Y, Sun S, Li X D, Zhang J W, Jiang X Y. 2019. Growth, DNA damage and biochemical toxicity of cyantraniliprole in earthworms (Eisenia fetida). Chemosphere, 236, 124328. 
Ren X F, Han S D, Zhang L L, Zhu Y M, Xu Y R. 2018. Insecticidal Composition Containing SYP-9080 and Diazinon and its Application in Killing Lepidoptera Pest. China Patent, Application No. 201711110457, 2017-11-12. (in Chinese) 
Theodoridis G. 2006. Fluorine-containing agrochemicals: an overview of recent developments. Advance Fluorine Science, 2, 121–175.
Vijay K, Grewal G K. 2018. Insecticide resistance in whitefly, Bemisia tabaci (Gennadius) on cotton in punjab. Journal of Entomological Research, 42, 75–80. 
Wang B L, Zhu H W, Ma Y, Xiong L X, Li Y Q, Zhao Y, Zhang J F, Chen Y W, Zhou S, Li Z. 2013. Synthesis, insecticidal activities, and SAR studies of novel pyridylpyrazole acid derivatives based on amide bridge modification of anthranilic diamide insecticides. Journal of Agricultural and Food Chemistry, 61, 5483–5493.
Wang C J, Li X F, Wu X M, Zhang W J. 1999. Toxicities of avermectins to cotton bollworm and effect of synergists. Journal of China Agricultural University, 4, 6–10. (in Chinese)
Wang Y J, Ou X M, Pei H, Lin X M, Yu K. 2006. Toxicities of novel insecticide chlorfenpyr against several insects in lab. Agrochemicals Research & Application, 10, 20–23. (in Chinese)
Wu J, Song B A, Hu, D Y, Yue M, Yang S. 2012. Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures. Pest Management Science, 68, 801–810.
Xu F Z, Wang Y Y, Luo D X, Yu G, Wu Y K, Dai A L, Zhao Y H. 2018. Novel trifluoromethyl pyridine derivatives bearing a 1,3,4-oxadiazole moiety as potential insecticide. Chemistry Select, 4, 2795–2799.
Yan T, Yu S J, Liu P F, Liu Z, Wang B L, Xiong L X, Li Z M. 2012. Design, synthesis and biological activities of novel benzoyl hydrazines containing pyrazole. Chinese Journal of Chemistry, 30, 919–923. 
Yu G, Luo L J, Chen S H, He F, Xie Y, Luo D X, Xue W, Wu J. 2018. Synthesis and insecticidal activity of novel diacylhydrazines derivatives containing a N-pyrazolepyrazole moiety. ChemistrySelect, 3, 10991–10995.
Zalucki M P, Shabbir A, Silva R, Adamson D, Liu S, Furlong M J. 2012. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae) just how long is a piece of string? Journal of Economic Entomology, 105, 1115–1129.
Zhang Y, Yang B, Li J, Liu M, Liu Z. 2017. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål. Insect Molecular Biology, 26, 453–460.
Zhao P, Yan Q X, Li X, Zhang M H, Zhang Y. 2015. Status and perspective of diamide insecticides. Pesticide Science and Administration, 6, 23–29. 
Zhao Q Q, Li Y Q, Xiong L X, Wang Q M. 2010. Design, synthesis and insecticidal activity of novel phenylpyrazoles containing a 2,2,2-trichloro-1-alkoxyethyl moiety. Journal of Agricultural and Food Chemistry, 58, 4992–4998.
Zhou S, Zhou S, Xie Y T, Meng X D, Wang B L, Xiong L X, Yang N, Li Z M. 2018. Synthesis, insecticidal activities and SAR studies of novel anthranilic diamides containing trifluoroethoxyl substituent and chiral amino acid moieties. Chinese Chemical Letters, 29, 1254–1256. 

[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[3] XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2397-2411.
[4] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] LIU Zhen-yu, LI Yi-yang, Leila. I. M. TAMBEL, LIU Yu-ting, DAI Yu-yang, XU Ze, LENG Xin-hua, ZHANG Xiang, CHEN De-hua, CHEN Yuan. Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1684-1694.
[7] WANG Ke, HE Yan-yan, ZHANG You-jun, GUO Zhao-jiang, XIE Wen, WU Qing-jun, WANG Shao-li. Characterization of the chemosensory protein EforCSP3 and its potential involvement in host location by Encarsia formosa[J]. >Journal of Integrative Agriculture, 2023, 22(2): 514-525.
[8] Senouwa Segla Koffi DOSSOU, XU Fang-tao, Komivi DOSSA, ZHOU Rong, ZHAO Ying-zhong, WANG Lin-hai. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): a comprehensive review and future prospects[J]. >Journal of Integrative Agriculture, 2023, 22(1): 14-30.
[9] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[10] WANG Xiang-yuan, TIAN Lu, FENG Shi-jing, WEI An-zhi. Identifying potential flavonoid biosynthesis regulator in Zanthoxylum bungeanum Maxim. by genome-wide characterization of the MYB transcription factor gene family[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1997-2018.
[11] Busiswa NDABA, Ashira ROOPNARAIN, Haripriya RAMA, Malik MAAZA. Biosynthesized metallic nanoparticles as fertilizers: An emerging precision agriculture strategy[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1225-1242.
[12] Muhammad Irfan WARIS, Aneela YOUNAS, Rana Muhammad Kaleem ULLAH, Fatima RASOOL, Muhammad Muzammal ADEEL, WANG Man-qun. Molecular and in vitro biochemical assessment of chemosensory protein 10 from the brown planthopper Nilaparvata lugens at acidic pH[J]. >Journal of Integrative Agriculture, 2022, 21(3): 781-796.
[13] WU Han-yu, QIAO Mei-yu, ZHANG Wang-feng, WANG Ke-ru, LI Shao-kun, JIANG Chuang-dao. Systemic regulation of photosynthetic function in maize plants at graining stage under vertically heterogeneous light environment[J]. >Journal of Integrative Agriculture, 2022, 21(3): 666-676.
[14] TONG Hui, DUAN Hua, WANG Sheng-jun, SU Jing-ping, SUN Yue, LIU Yan-qing, TANG Liang, LIU Xue-jun, CHEN Wen-fu. Moderate drought alleviate the damage of high temperature to grain quality by improving the starch synthesis of inferior grain in japonica rice[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3094-3101.
[15] TENG Dong, LIU Dan-feng, Khashaveh ADEL, SUN Pei-yao, GENG Ting, ZHANG Da-wei, ZHANG Yong-jun. Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2984-2994.
No Suggested Reading articles found!