Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (6): 1940-1955    DOI: 10.1016/j.jia.2024.03.060
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |

Duplicated chalcone synthase (CHS) genes modulate flavonoid production in tea plants in response to light stress

Mingzhuo Li1, 4*, Wenzhao Wang3*, Yeru Wang2*, Lili Guo2, Yajun Liu2, Xiaolan Jiang1, Liping Gao2#, Tao Xia1#

1 State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural University, Hefei 230036, China

2 School of Life Sciences, Anhui Agricultural University, Hefei 230036, China

3 College of Horticulture, Northwest A&F University, Yangling 712100, China

4 Department of Plant and Microbial Biology, North Carolina State University, Raleigh 27606, NC, USA

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  在茶树中,丰富的黄酮化合物是茶叶中的主要健康成分,并决定了茶饮料中涩味的风味特征。虽然茶树中黄酮生物合成途径的下游机制已经得到了广泛研究,但茶树中黄酮合成途径的上游基因,查尔酮合成酶(CHS)在茶树中的这一次生代谢过程中的作用还不太清楚。在本研究中,我们比较了黄酮代谢途径的演化特征,发现茶树中CHS基因发生了基因扩增现象。本文中我们筛选了三个CsCHS基因和一个CsCHS-like基因,作为进一步功能研究的可能候选者。茶树的CsCHS基因有效地在拟南芥chs-突变体中恢复了黄酮类化合物的合成,但CHS-like基因并没有此功能。此外,转基因烟草CsCHS植物与其野生型对照相比表现积累了更多含量的黄酮类化合物。更值得注意的是,我们对选定的CHS基因的启动子和基因表达水平进行了检测,反映出茶树中CHS基因对UV-B逆境产生不同响应。我们的研究表明,如UV-B暴露等环境因素可能是CHS基因复制事件背后的关键驱动因素。

Abstract  In tea plants, the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile.  While the downstream mechanisms of flavonoid biosynthesis have been extensively studied, the role of chalcone synthase (CHS) in this secondary metabolic process in tea plants remains less clear.  In this study, we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants.  We identified three CsCHS genes, along with a CsCHS-like gene, as potential candidates for further functional investigation.  Unlike the CsCHS-like gene, the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants.  Additionally, CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts.  Most notably, our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants.  Our findings suggest that environmental factors such as UV-B exposure could have been the key drivers behind the gene duplication events in CHS.
Keywords:  tea       flavonoids biosynthesis        CHS        gene duplication        UV-B stress   
Received: 15 May 2023   Accepted: 05 December 2023
Fund: This study was supported by the National Natural Science Foundation of China (U21A20232, 32372756, and 32202551).
About author:  Mingzhuo Li, E-mail: mli34@ncsu.edu; #Correspondence Liping Gao, E-mail: gaolp62@126.com; Tao Xia, Tel: +86-551-65785043, E-mail: xiatao62@126.com, xiatao62@ahau.edu.cn *These authors contributed equally to this study.

Cite this article: 

Mingzhuo Li, Wenzhao Wang, Yeru Wang, Lili Guo, Yajun Liu, Xiaolan Jiang, Liping Gao, Tao Xia. 2024.

Duplicated chalcone synthase (CHS) genes modulate flavonoid production in tea plants in response to light stress . Journal of Integrative Agriculture, 23(6): 1940-1955.

Abe I, Morita H. 2010. Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Natural Product Reports, 27, 809–838.

Azuma A, Yakushiji H, Koshita Y, Kobayashi S. 2012. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 236, 1067–1080.

Blanding C R, Simmons S J, Casati P, Walbot V, Stapleton A E. 2007. Coordinated regulation of maize genes during increasing exposure to ultraviolet radiation: identification of ultraviolet‐responsive genes, functional processes and associated potential promoter motifs. Plant Biotechnology Journal, 5, 677–695.

Buchfink B, Xie C, Huson D H. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12, 59–60.

Chen J D, Zheng C, Ma J Q, Jiang C K, Ercisli S, Yao M Z, Chen L. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research, 7, 1–11.

Chen S, Pan X, Li Y, Cui L, Zhang Y, Zhang Z, Pan G, Yang J, Cao P, Yang A. 2017. Identification and characterization of chalcone synthase gene family members in Nicotiana tabacumJournal of Plant Growth Regulation, 36, 374–384.

Chung E, Campise S N, Joiner H E, Tomison M D, Kaur G, Dufour J M, Cole L, Ramalingam L, Moustaid-Moussa N, Shen C L. 2019. Effect of annatto-extracted tocotrienols and green tea polyphenols on glucose homeostasis and skeletal muscle metabolism in obese male mice. The Journal of Nutritional Biochemistry, 67, 36–43.

Cui L, Yao S, Dai X, Yin Q, Liu Y, Jiang X, Wu Y, Qian Y, Pang Y, Gao L, Xia T. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany, 67, 2285–2297.

Dai X, Liu Y, Zhuang J, Yao S, Liu L, Jiang X, Zhou K, Wang Y, Xie D, Bennetzen J L. 2020. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist, 226, 1104–1116.

Dao T, Linthorst H, Verpoorte R. 2011. Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10, 397.

Emms D M, Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20, 1–14

Estabrook E M, Sengupta-Gopalan C. 1991. Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. The Plant Cell, 3, 299–308.

Faktor O, Loake G, Dixon R A, Lamb C J. 1997. The G‐box and H‐box in a 39 bp region of a French bean chalcone synthase promoter constitute a tissue‐specific regulatory element. The Plant Journal, 11, 1105–1113.

Feng Q, Geng G G, Zang Y, Xie H C, Lan J, Jun S, Zhi C. 2015. Molecular cloning and expression profiling of a chalcone synthase gene from Lamiophlomis rotata. Journal of Genetics, 94, 193–205.

Filippini T, Malavolti M, Borrelli F, Izzo A A, Fairweather‐Tait S J, Horneber M, Vinceti M. 2020. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database of Systematic Reviews, (3), CD005004.

Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annual Review of Plant Biology, 60, 433–453.

Gaynor M L, Lim-Hing S, Mason C M. 2020. Impact of genome duplication on secondary metabolite composition in non-cultivated species: A systematic meta-analysis. Annals of Botany, 126, 363–376.

Guo Y, Zhi F, Chen P, Zhao K, Xiang H, Mao Q, Wang X, Zhang X. 2017. Green tea and the risk of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore), 96, e6426.

Han Y, Ding T, Su B, Jiang H. 2016. Genome-wide identification, characterization and expression analysis of the chalcone synthase family in maize. International Journal of Molecular Sciences, 17, 161.

Hartmann U, Valentine W J, Christie J M, Hays J, Jenkins G I, Weisshaar B. 1998. Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Molecular Biology, 36, 741–754.

Hayashi S, Watanabe M, Kobayashi M, Tohge T, Hashimoto T, Shoji T. 2020. Genetic manipulation of transcriptional regulators alters nicotine biosynthesis in tobacco. Plant and Cell Physiology, 61, 1041–1053.

Hu X, Xu Y, Gao L, Xia T, Wang Y. 2014. Cloning and functional analysis of flavanone 3-hydroxylase gene (F3H) in tea (Camellia sinensis). Journal of Agricultural Biotechnology, 22, 309–316.

Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Cassagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–467.

Jez J M, Bowman M E, Dixon R A, Noel J. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nature Structural & Molecular Biology, 7, 786–791.

Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X, Gao L, Xia T. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS ONE, 8, e62315.

Jiang X, Liu Y, Wu Y, Tan H, Meng F, Wang Y, Li M, Zhao L, Liu L, Qian Y, Gao L, Xia T. 2015. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis]. Scientific Reports, 5, 8742.

Jun J H, Xiao X, Rao X, Dixon R A. 2018. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nature Plants, 4, 1034.

Kobayashi M, Kawano T, Ukawa Y, Sagesaka Y M, Fukuhara I. 2016. Green tea beverages enriched with catechins with a galloyl moiety reduce body fat in moderately obese adults: a randomized double-blind placebo-controlled trial. Food & Function, 7, 498–507.

Koes R E, Quattrocchio F, Mol J N. 1994. The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays, 16, 123–132.

Li M, Li Y, Guo L, Gong N, Pang Y, Jiang W, Liu Y, Jiang X, Zhao L, Wang Y. 2017. Functional characterization of tea (Camellia sinensis) MYB4a transcription factor using an integrative approach. Frontiers in Plant Science, 8, 943.

Liao Y, Zhou X, Zeng L. 2022. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Critical Reviews in Food Science and Nutrition, 62, 3751–3767.

Liu Y, Gao L, Liu L, Yang Q, Lu Z, Nie Z, Wang Y, Xia T. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). Journal of Biological Chemistry, 287, 44406–44417.

Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. 2005. Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 102, 5454–5459.

Mazumder M K, Choudhury S. 2019. Tea polyphenols as multi-target therapeutics for Alzheimer’s disease: An in silico study. Medical Hypotheses, 125, 94–99.

Mierziak J, Kostyn K, Kulma A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules, 19, 16240–16265.

Ohno S. 2013. Evolution by Gene Duplication. Springer Berlin, Heidelberg.

Paterson A H, Freeling M, Tang H, Wang X. 2010. Insights from the comparison of plant genome sequences. Annual Review of Plant Biology, 61, 349–372.

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics, 18, 411–424.

Rocholl M, Talke-Messerer C, Kaiser T, Batschauer A. 1994. Unit 1 of the mustard chalcone synthase promoter is sufficient to mediate light responses from different photoreceptors. Plant Science, 97, 189–198.

Routray W, Orsat V, Safety F. 2011. Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Comprehensive Reviews in Food Science and Food Safety, 10, 303–320.

Safrany J, Haasz V, Mate Z, Ciolfi A, Feher B, Oravecz A, Stec A, Dallmann G, Morelli G, Ulm R. 2008. Identification of a novel cis‐regulatory element for UV‐B‐induced transcription in Arabidopsis. The Plant Journal (for Cell and Molecular Biology), 54, 402–414.

Shih C H, Chu H, Tang L K, Sakamoto W, Maekawa M, Chu I K, Wang M, Lo C. 2008. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 228, 1043–1054.

Takeuchi A, Matsumoto S, Hayatsu M. 1994. Chalcone synthase from Camellia sinensis: Isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant Cell Physiology, 35, 1011–1018.

Tian L, Wan S B, Pan Q H, Zheng Y J, Huang W. 2008. A novel plastid localization of chalcone synthase in developing grape berry. Plant Science (Limerick), 175, 431–436.

Tuteja J H, Vodkin L O. 2008. Structural features of the endogenous CHS silencing and target loci in the soybean genome. Crop Science, 48, S49–S68.

Vázquez L C, López-Uriarte P, Lopez-Espinoza A, Navarro M M, Espinoza-Gallardo A, Guzmán M A. 2017. Effects of green tea and its epigallocatechin (EGCG) content on body weight and fat mass in humans: A systematic review. Nutricion Hospitalaria, 34, 731–737.

Wan W, Jiang B, Sun L, Xu L, Xiao P. 2017. Metabolomics reveals that vine tea (Ampelopsis grossedentata) prevents high-fat-diet-induced metabolism disorder by improving glucose homeostasis in rats. PLoS ONE, 12, e0182830.

Wang P, Liu Y, Zhang L, Wang W, Hou H, Zhao Y, Jiang X, Yu J, Tan H, Wang Y. 2020. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. The Plant Journal, 101, 18–36.

Wang P, Zhang L, Jiang X, Dai X, Xu L, Li T, Xing D, Li Y, Li M, Gao L. 2018. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta, 247, 139–154.

Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Cheng H, Wang L, Cui P, Jin J, Wang X, Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang G, Chen L, Ruan J, Yang Y. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications, 11, 1–10.

Wang Y, Chen F, Ma Y, Zhang T, Sun P, Lan M, Li F, Fang W. 2021. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Horticulture Research, 8, 1–12.

Wang Y, Xu Y, Hu X, Jiang X, Yang Q, Li W, Liu Y, Gao L, Xia T. 2013. Clone, expression and functional analysis of dihydroflavonol 4-reductase gene of tea plant (Camellia sinensis). Journal of Tea Science, 33, 193–201.

Wang Z, Yu Q, Shen W, El Mohtar C A, Zhao X, Gmitter F G. 2018. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids. BMC Plant Biology, 18, 1–13.

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 115, E4151–E4158.

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.

Xia E, Tong W, Hou Y, An Y, Chen L, Wu Q, Liu Y, Yu J, Li F, Li R. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant, 13, 1013–1026.

Xia E H, Zhang H B, Sheng J, Li K, Zhang Q J, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J J, Mao S Y, Jiao J Y, Zhang D, Zhao Y, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant, 10, 866–877.

Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. 2019. The origin and evolution of plant flavonoid metabolism. Frontiers in Plant Science, 10, 943.

Yu H N, Wang L, Sun B, Gao S, Cheng A X, Lou H. 2015. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum. Plant Cell Reports, 34, 233–245.

Zhang L, Wu S, Chang X, Wang X, Zhao Y, Xia Y, Trigiano R N, Jiao Y, Chen F. 2020. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell Environmental Entomology, 43, 2847–2856.

Zhang X, Chen S, Shi L, Gong D, Zhang S, Zhao Q, Zhan D, Vasseur L, Wang Y, Yu J, Liao Z, Xu X, Qi R, Wang W, Ma Y, Wang P, Ye N, Ma D, Shi Y, Wang H, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 53, 1250–1259.

Zhao X, Wang P, Li M, Wang Y, Jiang X, Cui L, Qian Y, Zhuang J, Gao L, Xia T. 2017. Functional characterization of a new tea (Camellia sinensis) flavonoid glycosyltransferase. Journal of Agricultural and Food Chemistry, 65, 2074–2083.

Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, Jiang X, Liu Y, Gao L, Xia T. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry, 305, 125507.

[1] Meixue Sun, Tong Li, Yingjie Liu, Kenneth Wilson, Xingyu Chen, Robert I. Graham, Xianming Yang, Guangwei Ren, Pengjun Xu. A dicistrovirus increases pupal mortality in Spodoptera frugiperda by suppressing protease activity and inhibiting larval diet consumption[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2723-2734.
[2] Yanmin Li, Liangjing Yin, Xianyu He, Cenlong Hu, Ronghua Wu, Qian Long, Shixin Xiao, Deyi Yuan. Ploidy and fruit trait variation in oil-tea Camellia: Implications for ploidy breeding[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2662-2673.
[3] Yan Zhang, Yi Huang, Fan Zhang, Zeng Tang.

Effects of formal credit on pastoral household expense: Evidence from the Qinghai–Xizang Plateau of China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1774-1785.

[4] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[5] TAO Ling-ling, TING Yu-jie, CHEN Hong-rong, WEN Hui-lin, XIE Hui, LUO Ling-yao, HUANG Ke-lin, ZHU Jun-yan, LIU Sheng-rui, WEI Chao-ling. Core collection construction of tea plant germplasm in Anhui Province based on genetic diversity analysis using simple sequence repeat markers[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2719-2728.
[6] WANG Jin-bin, XIE Jun-hong, LI Ling-ling, ADINGO Samuel. Review on the fully mulched ridge–furrow system for sustainable maize production on the semi-arid Loess Plateau[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1277-1290.
[7] WANG Yuan, ZHOU Hong-zhang, GAO Yu, WANG Ning-wei, LIU Han, YANG Fu-yu, NI Kui-kui. Ensiling vine tea (Ampelopsis grossedentata) residue with Lactobacillus plantarum inoculant as an animal unconventional fodder[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1172-1183.
[8] FENG Shi-qian, ZHANG Neng, CHEN Jun, ZHANG Dao-gang, ZHU Kai-hui, CAI Ni, TU Xiong-bing, ZHANG Ze-hua. Serine protease inhibitors LmSPN2 and LmSPN3 co-regulate embryonic diapause in Locusta migratoria manilensis (Meyen) via the Toll pathway[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3720-3730.
[9] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
[10] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[11] XU Yong-mei, QIAO Fang-bin, HUANG Ji-kun. Black tea markets worldwide: Are they integrated?[J]. >Journal of Integrative Agriculture, 2022, 21(2): 552-565.
[12] YANG Ya-jun, XU Hong-xing, WU Zhi-hong, LU Zhong-xian. Effects of inhibitors on the protease profiles and degradation of activated Cry toxins in larval midgut juices of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2195-2203.
[13] LI Xiang-dong, SHI Ming, PAN Hong, LU Xiu-juan, WEI Xin-yuan, LU Ping, LIAN Qi-xian, FU Yu-hua. Diversity in metagenomic sequences reveals new pathogenic fungus associated with smut in Job’s tears[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2257-2264.
[14] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[15] Saif ULLAH, Sheeraz MUSTAFA, Wael ENNAB, Muhammad JAN, Muhammad SHAFIQ, Ngekure M. X. KAVITA, Lü Zeng-peng, MAO Da-gan, SHI Fang-xiong. A protective role of resveratrol against the effects of immobilization stress in corpora lutea of mice in early pregnancy[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1857-1866.
No Suggested Reading articles found!