Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (9): 2687-2704    DOI: 10.1016/j.jia.2023.07.007
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors

CHANG Yao-jun1, CHEN Guo-song1, YANG Guang-yan1, SUN Cong-rui1, WEI Wei-lin1, Schuyler S.  KORBAN2#, WU Jun1#

1 College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, P.R.China
2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

红皮梨因鲜艳的果皮色泽受消费者喜爱,对其果皮花青苷生物合成分子调控机制已有较多的研究;而红肉梨仅存在于少数西洋梨中,目前对红肉梨中花青苷合成的分子调控机制知之甚少。本研究基于红肉与白肉西洋梨的转录组比较分析,鉴定到一个在果肉中表达趋势与花青苷含量变化显著相关的乙烯响应因子PcERF5。进一步通过瞬时转化梨果皮和稳定转化苹果愈伤组织,验证了候选基因PcERF5调控花青苷生物合成的功能。研究表明,PcERF5可通过不同途径调控花青苷的生物合成。一方面,PcERF5激活了花青苷生物合成途径中结构基因(PcDFRPcANSPcUFGT)以及PcMYB10PcMYB114关键转录因子的表达。另一方面,PcERF5PcMYB10互作形成ERF5-MYB10蛋白复合体,增强了PcERF5对其靶基因的转录激活。因此,本研究揭示了PcERF5作为转录激活子促进西洋梨果肉中花青苷合成的功能,研究结果不仅为花青苷生物合成的调控机制提供了新的见解,也为红肉梨的分子育种提供了理论指导



Abstract  

As there is a strong interest in red-skinned pears, the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated; however, little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm, primarily found in European pears (Pyrus communis).  In this study, based on transcriptomic analysis in red-fleshed and white-fleshed pears, we identified an ethylene response factor (ERF) from Pcommunis, PcERF5, of which expression level in fruit flesh was significantly correlated with anthocyanin content.  We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.  PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.  On the one hand, PcERF5 can activate the transcription of flavonoid biosynthetic genes (PcDFR, PcANS and PcUFGT) and two key transcription factors encoding genes PcMYB10 and PcMYB114.  On the other hand, PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.  Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis, which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.  This new knowledge will provide guidance for molecular breeding of red-fleshed pear.

Keywords:  Pyrus communis        red-fleshed        anthocyanin biosynthesis        PcERF5        PcMYB10/PcMYB114  
Received: 07 April 2023   Accepted: 21 May 2023
Fund: This work was funded by the National Natural Science Foundation of China (31820103012), the earmarked fund for China Agriculture Research System (CARS-28), and the earmarked fund for Jiangsu Agricultural Industry Technology System, China (JATS[2022]454). 
About author:  CHANG Yao-jun, E-mail: 1547696981@qq.com; #Correspondence WU Jun, Tel: +86-25-84396485, E-mail: wujun@njau.edu.cn; Schuyler S. KORBAN, E-mail: korban@illinois.edu

Cite this article: 

CHANG Yao-jun, CHEN Guo-song, YANG Guang-yan, SUN Cong-rui, WEI Wei-lin, Schuyler S. KORBAN, WU Jun. 2023. The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors. Journal of Integrative Agriculture, 22(9): 2687-2704.

Allan A C, Hellens R P, Laing W A. 2008. MYB transcription factors that colour our fruit. Trends in Plant Science13, 99–102.

An J P, An X H, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2018. BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiology38, 1578–1587.

An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal101, 573–589.

Bai S L, Sun Y W, Qian M J, Yang F X, Ni J B, Tao R Y, Li L, Shu Q, Zhang D, Teng Y W. 2017. Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports7, 63.

Bai S L, Tao R Y, Tang Y X, Yin L, Ma Y J, Ni J B, Yan X H, Yang Q S, Wu Z Y, Zeng Y L, Teng Y W. 2019a. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal17, 1985–1997.

Bai S L, Tao R Y, Yin L, Ni J B, Yang Q S, Yan X H, Yang F, Guo X P, Li H X, Teng Y W. 2019b. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. The Plant Journal100, 1208–1223.

Chagné D, Carilisle C M, Blond C, Volz R K, Whitworth C J, Oraguzie N CCrowhurst R NAllan A CEspley R VHellens R PGardiner S E. 2007. Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in appleBMC Genomics8, 212.

Chagné D, Lin-Wang K, Espley R V, Volz R K, How N M, Rouse S, Brendolise C, Carlisle C M, Kumar S, Silva N D, Micheletti D, McGhie T, Crowhurst R N, Storey R D, Velasco R, Hellens R P, Gardiner S E, Allan A C. 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiology161, 225–239.

Chakravarthy S, Tuori R P, D’Ascenzo M D, Fobert P R, Després C, Martin G B. 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. The Plant Cell15, 3033–3050.

Dare A P, Schaffer R J, Lin-Wang K, Allan A C, Hellens R P. 2008. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods4, 17.

Dondini L, Pierantoni L, Ancarani V, Angelo M D, Cho K H, Shin I S, Musacchi S, Kang S J, Sansavini S. 2008. The inheritance of the red colour character in European pear (Pyrus communis) and its map position in the mutated cultivar ‘Max Red Bartlett’. Plant Breeding127, 524–526.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in ArabidopsisTrends in Plant Science15, 573–581.

Espley R V, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H J, Gardiner S E, Hellens R P, Allan A C. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell21, 168–183.

Espley R V, Hellens R P, Putterill J, Stevenson D E, Kutty-Amma S, Allan A C. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal49, 414–427.

Feller A, Machemer K, Braun E L, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal66, 94–116.

Feng S Q, Sun S S, Chen X L, Wu S J, Wang D Y, Chen X S. 2015. PyMYB10 and PyMYB10.1 interact with bHLH to enhance anthocyanin accumulation in pears. PLoS ONE10, e0142112.

Feng S Q, Wang Y L, Yang S, Xu Y T, Chen X S. 2010. Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10Planta232, 245–255.

Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal53, 814–827.

Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell23, 1512–1522.

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology57, 761–780.

Hellens R P, Allan A C, Friel E N, Bolitho K, Grafton K, Templeton M D, Karunairetnam S, Gleave A P, Laing W A. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods1, 13.

Holton T A, Cornish E C. 1995. Gentics and biochemistry of anthocyanin biosynthesis. The Plant Cell7, 1071–1083.

Huang C H, Yu B, Teng Y W, Su J, Shu Q, Cheng Z Q, Zeng L Q. 2009. Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Scientia Horticulturae121, 149–158.

Kumar K R, Kirti P B. 2010. A mitogen-activated protein kinase, AhMPK6 from peanut localizes to the nucleus and also induces defense responses upon transient expression in tobacco. Plant Physiology and Biochemistry48, 481–486.

Li C, Wu J, Hu K D, Wei S W, Sun H Y, Hu L Y, Han Z, Yao G F, Zhang H. 2020. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research7, 37.

Liu H N, Su J, Zhu Y F, Yao G F, Allan A C, Ampomah-Dwamena C, Shu Q, Lin-Wang K, Zhang S L, Wu J. 2019. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Horticulture Research6, 134.

Liu Y FZhou BQi Y WChen XLiu C HLiu Z DRen X L. 2017. Expression differences of pigment structural genes and transcription factors explain flesh coloration in three contrasting kiwifruit cultivars. Frontiers in Plant Science8, 1507.

Luo X N, Luo S, Fu Y Q, Kong C, Wang K, Sun D Y, Li M C, Yan Z G, Shi Q Q, Zhang Y L. 2022. Genome-wide identification and comparative profiling of microRNAs reveal flavonoid biosynthesis in two contrasting flower color cultivars of tree peony. Frontiers in Plant Science12, 797799.

Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig J F, Hülskamp M, Hoecker U. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in ArabidopsisThe Plant Journal74, 638–651.

Matus J T, Aquea F, Arce-Johnson P. 2008. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology8, 83.

Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. 2009. Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant and Cell Physiology50, 2210–2222.

Nesi N, Debeaujon I, Jond C, Stewart A J, Jenkins G I, Caboche M, Lepiniec L. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell14, 2463–2479.

Ni J B, Bai S L, Zhao Y, Qian M J, Tao R Y, Yin L, Gao L, Teng Y W. 2019. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in ‘Red Zaosu’ pear fruits by interacting with MYB114. Plant Molecular Biology99, 67–78.

Ni J B, Premathilake A T, Gao Y H, Yu W J, Tao R Y, Teng Y W, Bai S L. 2021. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. The Plant Journal105, 167–181.

Ou C Q, Zhang X L, Wang F, Zhang L Y, Zhang Y J, Fang M, Wang J H, Wang J X, Jiang S L, Zhang Z H. 2020. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): a deletion in the PpBBX24 gene is associated with the red skin of pear. Horticulture Research3, 39.

Pierantoni L, Dondini L, Franceschi P D, Musacchi S, Winke B S J, Sansavini S. 2010. Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear Pyrus communisPlant Physiology and Biochemistry48, 1020–1026.

Qi T C, Song S S, Ren Q C, Wu D W, Huang H, Chen Y, Fan M, Peng W, Ren C M, Xie D X. 2011. The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thalianaThe Plant Cell23, 1795–1814.

Rubtsov G. 1944. Geographical distribution of the genus Pyrus and trends and factors in its evolution. The American Naturalist78, 358–366.

Salvatierra APimentel PMoya-León M AHerrera R. 2013. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry90, 25–36.

Sasaki K, Mitsuhara I, Seo S, Ito H, Matsui H, Ohashi Y. 2007. Two novel AP2/ERF domain proteins interact with cis-element VWRE for wound-induced expression of the tobacco tpoxN1 gene. The Plant Journal50, 1079–1092.

Shin D H, Choi M, Kim K, Bang G, Cho M, Choi S B, Choi G, Park Y I. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in ArabidopsisFEBS Letters587, 1543–1547.

Shin J, Park E, Choi G. 2007. PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. The Plant Journal49, 981–994.

Steyn W J, Wand S J E, Holcroft D M, Jacobs G. 2005. Red colour development and loss in pears. Acta Horticulturae671, 79–85.

Wang N, Liu W J, Zhang T L, Jiang S H, Xu H F, Wang Y C, Zhang Z Y, Wang C Z, Chen X S. 2018. Transcriptomic analysis of red-fleshed apples reveals the novel role of MdWRKY11 in flavonoid and anthocyanin biosynthesis. Journal of Agricultural and Food Chemistry66, 7076–7086.

Wang X P, Niu Y L, Zheng Y. 2017. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences22, 6125.

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology126, 485–493.

Wu J, Wang Z W, Shi Z B, Zhang S, Ming R, Zhu S L, Khan M A, Tao S T, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K J, Huang X S, Wang Y T, Zhao X, Wu J Y, Deng C, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research23, 396–408.

Wu L J, Zhang Z J, Zhang H W, Wang X C, Huang R F. 2008. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiology148, 1953–1963.

Wu T, Liu H T, Zhao G P, Song J X, Wang X L, Yang C Q, Zhai R, Wang Z G, Ma F W, Xu L F. 2020. Jasmonate and ethylene-regulated ethylene response factor 22 promotes lanolin-induced anthocyanin biosynthesis in ‘Zaosu’ pear (Pyrus bretschneideri Rehd.) fruit. Biomolecules10, 278.

Yao G F, Ming M L, Allan A C, Gu C, Li L T, Wu X, Wang R Z, Chang Y J, Qi K J, Zhang S L, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal92, 437–451.

Yu B, Zhang D, Huang C H, Qian M J, Zheng X Y, Teng Y W. 2012. Isolation of anthocyanin biosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ, tissue, cultivar, bagging and fruit size. Scientia Horticulturae136, 29–37.

Zhang J, Xu H F, Wang N, Jiang S H, Fang H C, Zhang Z Y, Yang G X, Wang Y C, Su M Y, Xu L, Chen X S. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology98, 205–218.

Zhang S Y, Chen Y X, Zhao L L, Li C Q, Yu J Y, Li T T, Wang W Y, Zhang S N, Su H Y, Wang L. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology40, 413–423.

Zhang X D, Allan A C, Yi Q, Chen L M, Li K Z, Su J. 2011. Differential gene expression analysis of Yunnan Red Pear, Pyrus pyrifolia, during fruit skin coloration. Plant Molecular Biology Reports29, 305–314.

Zhou H, Lin-Wang K, Wang H L, Gu C, Dare A P, Espley R V, He H P, Allan A C, Han Y P. 2015. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal82, 105–121.

Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley R V, Wang L, Allan A C, Han Y P. 2014. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red colration in peach. BMC Plant Biology14, 388.

[1] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
No Suggested Reading articles found!