Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (10): 2943-2956    DOI: 10.1016/j.jia.2022.07.042
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Dispersal routes of Cercospora zeina causing maize gray leaf spot in China
DUAN Can-xing1*, ZHAO Li-ping1*, WANG Jie2, LIU Qing-kui1, YANG Zhi-huan1, WANG Xiao-ming1
1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, P.R.China
2 Department of Biological Center, Harbin Academy of Agricultural Sciences, Harbin 150028, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  【目的】明确引起我国西南地区玉米灰斑病的致病菌玉米尾孢(Cercospora zeina)在中国的分布区域以及扩散路径,预测病害未来可能的扩展区域,为有针对性开展灰斑病的早防早控工作、保护玉米安全生产提供重要信息。【方法】利用NTSYSpc、Popgene 32、ClustalX1.83、BioEdit、DnaSP 5.0、Network4.5.0.2和Arlequin 3.11等软件,对127个采自中国云南、四川、贵州、湖北、重庆、甘肃、陕西和重庆的C. zeina分离物进行了基于ISSR技术的群体遗传多样性分析,对其中108个进行了基于5个基因片段的多基因序列分析。【结果】群体遗传多样性分析表明,中国的C. zeina种群具有较高水平的遗传分化,127个分离物被划分为2个大群和8个亚群。各地理种群内的遗传分化是种群结构变异的主要因素,地理种群间的遗传相似性与病菌扩展时间及方向一致。多基因序列分析表明,中国C. zeina种群存在9种单倍型,单倍型的分布与病菌传播路线相关,病菌定殖最早的云南种群出现了群体扩张事件。群体遗传多样性与多基因序列分析证明,C. zeina云南种群具有最高的遗传多样性和单倍型多样性,其他地理种群均源自云南种群的扩散。在印度洋西南季风作用下,云南C. zeina种群逐渐扩展至四川、贵州、陕西、甘肃和重庆,同时经过种子携带方式从云南直接进入湖北,并在风力作用下从湖北传入陕西、河南及相邻的重庆。【结论】首次明确了玉米灰斑病致病菌玉米尾孢的遗传变异及其在中国的传播和扩散路径,夏季季风以及种子带菌是该种灰斑病快速传播的主要因素;预计未来玉米尾孢灰斑病将在季风作用下继续缓慢向北方玉米区扩散,形成新的重大病害威胁。

Abstract  

The gray leaf spot caused by Cercospora zeina has become a serious disease in maize in China.  The isolates of C. zeina from Yunnan, Sichuan, Guizhou, Hubei, Chongqing, Gansu, and Shaanxi were collected.  From those, 127 samples were used for genetic diversity analysis based on inter-simple sequence repeat (ISSR) and 108 samples were used for multi-gene sequence analysis based on five gene fragments.  The results indicated that populations of C. zeina were differentiated with a relatively high genetic level and were classified into two major groups and seven subgroups.  The intra-population genetic differentiation of C. zeina is the leading cause of population variation in China, and inter-population genetic similarity is closely related to the colonization time and spread direction.  The multi-gene sequence analysis of C. zeina isolates demonstrated that there were nine haplotypes.  Genetic diversity and multi-gene sequence revealed that Yunnan population of C. zeina, the earliest colonizing in China, had the highest genetic and haplotype diversity and had experienced an expansion event.  With the influence of the southwest monsoon in the Indian Ocean, C. zeina from Yunnan gradually moved to Sichuan, Guizhou, Shaanxi, Gansu, and Chongqing.  Meanwhile, C. zeina was transferred directly from the Yunnan into the Hubei Province via seed and then came into Shaanxi, Henan, and Chongqing along with the wind from Hubei.

Keywords:  Maize        gray leaf spot        Cercospora zeina        population        disperse routes  
Received: 11 August 2021   Accepted: 13 September 2021
Fund: This work was supported by the China Agriculture Research System from MOAR and MOF (CARS-02) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2017-ICS).
About author:  DUAN Can-xing, E-mail: duancanxing@caas.cn; ZHAO Li-ping, E-mail: 1096205891@qq.com; Correspondence WANG Xiao-ming, Tel/Fax: +86-10-82109608, E-mail: wangxiaoming@caas.cn * These authors contributed equally to this study.

Cite this article: 

DUAN Can-xing, ZHAO Li-ping, WANG Jie, LIU Qing-kui, YANG Zhi-huan, WANG Xiao-ming. 2022. Dispersal routes of Cercospora zeina causing maize gray leaf spot in China. Journal of Integrative Agriculture, 21(10): 2943-2956.

Ali S, Rodriguez-Algaba J, Thach T, Sørensen C K, Hansen J G, Lassen P, Nazari K, Hodson D P, Justesen A F, Hovmøller M S. 2017. Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. Frontiers in Plant Science, 8, 1057. 
Bedoya C A, Dreisigacker S, Hearne S, Franco J, Mir C, Prasanna B M, Taba S, Charcosset A, Warburton M L. 2017. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE, 12, e0173488. 
Brown J K M, Hovmøller M S. 2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297, 537–541.
Brunelli K R, Dunkle L D, Sobrinho C A, Fazza A C, Camargo L E A. 2008. Molecular variability in the maize grey leaf spots pathogens in Brazil. Genetics and Molecular Biology, 31, 938–942.
Burdon J J, Thrall P H. 2008. Pathogen evolution across the agro-ecological interface: implications for disease management. Evolutionary Applications, 1, 57–65.
Chen C S, Li B J, Huang C Q, Xu X P, Chen Q H, Weng Q Y. 2010. Comparison analysis of Phytophthora infestans population genetic structure from different hosts based on SSR markers. Chinese Agricultural Science Bulletin, 26, 263–268. (in Chinese)
Chen Z H. 2016. Ecological regions and variety requirements of the southwest corn. Journal of Mountain Agriculture and Biology, 35, 1–9. (in Chinese)
Close R C, Moar N T, Tomlinson A I, Lowe A D. 1978. Aerial dispersal of biological material from Australia to New Zealand. International Journal of Biometeorology, 22, 1–19.
Corredor-Moreno P, Saunders D G O. 2020. Expecting the unexpected, factors influencing the emergence of fungal and oomycete plant pathogens. New Phytologist, 225, 118–125.
Croll D, Wille L, Gamper H A, Mathimaran N, Lammers P, Corradi N, Sanders I R. 2008. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 178, 672–687. 
Crous P W, Groenewald J Z, Groenewald M, Caldwell P, Braun U, Harrington T C. 2006. Species of Cercospora associated with grey leaf spots of maize. Studies in Mycology, 55, 189–197.
Dhami N B, Kim S K, Paudel A, Shrestha J, Rijal T R. 2015. A review on threat of gray leaf spots disease of maize in Asia. Journal of Maize Research and Development, 1, 71–85.
Dunkle L D, Levy M. 2000. Genetic relatedness of African and United States populations of Cercospora zeae-maydis. Phytopathology, 90, 486–490.
FAO. 2019. Crops and livestock products. [2020-12-5]. http://www.fao.org/faostat/en/#data
Felicísimo Á M, Muñoz J, González-Solis J. 2008. Ocean surface winds drive dynamics of transoceanic aerial movements. PLoS ONE, 3, e2928.
Fu J, Luo Z Q, Li F Y, Wang K, Wei X J, Yang J R. 2010. Genetic diversity of Venturia inaequalis of Shaanxi Province with AFLP analysis. Journal of Northwest A & F University (Natural Science Edition), 38, 172–178. (in Chinese)
Gillespie R G, Baldwin B G, Waters J M, Fraser C I, Nikula R, Roderick G K. 2012. Long-distance dispersal, a framework for hypothesis testing. Trends in Ecology & Evolution, 27, 47–56.
Golan J J, Pringle A. 2017. Long-distance dispersal of fungi. Microbiology Spectrum, 5, FUNK-0047-2016.
Huang W D, Zhao X Y, Zhao X, Li Y L, Pan C C. 2016. Environmental determinants of genetic diversity in Caragana microphylla (Fabaceae) in northern China. Botanical Journal of the Lnnean Society, 181, 269–278.
Jia J Y, Zhang J X, Wu Y X, Wang Y Y, Mao Z C, He Y Q. 2013. Analysis of Cercospora zeina differences in Yunnan Province. Southwest China Journal of Agricultural Science, 26, 1014–1018. (in Chinese)
Juhásová L, Králová-Hromadová I, Bazsalovicsová E, Minárik G, Štefka J, Mikulíček P, Pálková L, Pybus M. 2016. Population structure and dispersal routes of an invasive parasite, Fascioloides magna, in North America and Europe. Parasites & Vectors, 9, 547. 
Katwal T B, Wangchuk D, Dorji L, Wangdi N, Choney R. 2013. Evaluation of gray leaf spots tolerant genotypes from CIMMYT in the highland maize production eco-systems of Bhutan. Journal of Life Sciences, 7, 443–452.
Khademi S M H, Sazinas P, Jelsbak L. 2019. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biology and Evolution, 11, 1385–1397.
Khaiyam M O, Faruq A N, Chowdhury M S M, Hossain M I, Ganapati R K. 2017. A field investigation, common diseases and threat for maize production. International Journal of Plant Biology & Research, 5, 1076.
Kinyua Z M, Smith J J, Kibata G N, Simons S A, Langat B C. 2010. Status of grey leaf spots disease in Kenyan maize production ecosystems. African Crop Science Journal, 18, 183–194.
Kolmer J A, Herman A, Ordoñez M E, German S, Morgounov A, Pretorius Z, Visser B, Anikster Y, Acevedo M. 2020. Endemic and panglobal genetic groups, and divergence of host-associated forms in worldwide collections of the wheat leaf rust fungus Puccinia triticina as determined by genotyping by sequencing. Heredity, 124, 397–409. 
Lalitha S. 2000. Primer Premier 5. Biotech Software & Internet Report, 1, 270–272.
Latterell F M, Rossi A E. 1983. Gray leaf spots of corn, a disease on the move. Plant Disease, 67, 842–847.
Leyronas C, Morris C E, Choufany M, Soubeyrand S. 2018. Assessing the aerial interconnectivity of distant reservoirs of Sclerotinia sclerotiorum. Frontiers in Microbiology, 9, 2257.
Li T Y, Ma Y C, Wu X X, Chen S, Xu X F, Wang H, Cao Y Y, Xuan Y H. 2018. Race and virulence characterization of Puccinia graminis f. sp. tritici in China. PLoS ONE, 13, e0197579. 
Li Y Q, Yang D L, Wang H S, Zi Y B, Dong J G, Zhao Y M, Zhang S W, Peng J X, Liu R B, He Y Q. 2008. Occurrence, damage and control of maize gray spot in Dali Prefecture, Yunnan. Journal of Yunnan University (Natural Science Edition), 30, 339–343. (in Chinese)
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.
Liu K J, Xu X D. 2013. First report of gray leaf spots of maize caused by Cercospora zeina in China. Plant Disease, 97, 1656. 
Liu Q K, Qin Z H, Zhang X L, Jiang K, Chen M G, Wu X F, He Y Q, Wang G Q, Jin Q M, Wang X M. 2013. Identification of Cercospora species associated with maize gray leaf spots in China. Scientia Agricultura Sinica, 46, 4044–4057. (in Chinese)
Lu G Z, Wang F, Wang C P, Liang J Y, Zhang Y X, Chen J, Bai J K. 1998. Advance in the study of maize grey leaf spots. Journal of Shenyang Agricultural University, 29, 346–349. (in Chinese)
Lu Z Z, Li Y J, Li H C, Fu J F. 2008. Studies on effect of gray leaf spots to yield loss and yield characters. Journal of Maize Sciences, 16, 126–129. (in Chinese)
Meisel B, Korsman J, Kloppers F J, Berger D K. 2009. Cercospora zeina is the causal agent of grey leaf spots disease of maize in southern Africa. European Journal of Plant Pathology, 124, 577–583. 
Meyer M, Cox J A, Hitchings M D T, Burgin L, Hort M C, Hodson D P, Gilligan C A. 2017. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nature Plants, 3, 780–786. 
Ming Q Z. 2007. A study on regional change of natural environment of China influenced by southwest monsoon. Yunnan Geographic Environment Research, 19, 93–97. (in Chinese)
Mueller D, Wise K A, Sisson A J, Allen T A, Bergstrom G C, Bosley D B, Bradley C A, Broders K D, Byamukama E, Chilvers M I. 2016. Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 17, 211–222. 
Munkvold G P, White D G. 2016. Compendium of Corn Diseases. 4th ed. The American Phytopathological Society Press, Saint Paul.  
National Bureau of Statistics of China. 2019. Statistical Communique of the People’s Republic of China on the 2018 National Economic and Social Development. [2019-12-08].
      http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm  
Neves D L, Silva C N, Pereira C B, Campos H D, Tessmann D J. 2015. Cercospora zeina is the main species causing gray leaf spots in southern and central Brazilian maize regions. Tropical Plant Pathology, 40, 368–374. 
Nevo E. 2001. Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 6233–6240. 
Okori P. 2004. Population studies of Cercospora zeae-maydis and related Cercospora fungi. Ph D thesis, Swedish University of Agricultural Sciences. 
Okori P, Rubaihayo P R, Adipala E, Fahieson J, Dixelius C. 2015. Dynamics of Cercospora zeina populations in maize-based agro-ecologies of Uganda. African Crop Science Journal, 23, 45–57. 
Pamidimarri S D V N, Reddy M P. 2014. Phylogeography and molecular diversity analysis of Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis. Molecular Biology Reports, 41, 3225–3234.
Ren J, Chen L, Sun D, You F M, Wang J R, Peng Y L, Nevo E, Beiles A, Sun D F, Luo M C, Peng J H. 2013. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evolutionary Biology, 13, 169. 
Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3, 430–439. 
Schneider S, Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites, application to human mitochondrial DNA. Genetics, 152, 1079–1089.
Sharma-Poudyal D, Chen X M, Wan A M, Zhan G M, Kang Z S, Cao S Q, Jin S L, Morgounov A, Akin B, Mert Z, Shah S J A, Bux H, Ashraf M, Sharma R C, Madariaga R, Puri K D, Wellings C, Xi K Q, Wanyera R, Manninger K, Ganzález M I, Koyda M, Sanin S, Patzek L J. 2013. Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Disease, 97, 379–386.
Shen G, Wang Y C, Zheng X B. 2003. Genetic variation among Phytophthora parasitica strains isolated from different host plants. Biodiversity Science, 11, 486–490.
Smith A L, Hodkinson T R, Villellas J, Catford J A, Csergö A M, Blomberg S P, Crone E E, Ehrlén J, Garcia M B, Laine A L, Roach D A, Salguero-Gòmez R, Wardle G M, Childs D Z, Elderd B D, Finn A, Munné-Bosch S, Baudraz M E A, Bódis J, Brearley F Q, et al. 2020. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences  of the United States of America, 117, 4218–4227.
Song J, Cui B. 2017. Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evolutionary Biology, 17, 102.
Sun L H. 2005. How to identify gray leaf spots of maize. Yunnan Agriculture, 12, 9–10. (in Chinese)
Tehon L R, Daniels E. 1925. Note on parasitic fungi on Illinois. Mycologia, 17, 240–249.
Wang J, Levy M, Dunkle L D. 1998. Sibling species of Cercospora associated with gray leaf spots of maize. Phytopathology, 88, 1269–1275.
Wang L M, Zheng X Q, Liu C B, Xiang F H, Liu H L, Guo G Y. 2009. Status and trend analysis of maize diseases in the west mountain regions of Hubei. Hubei Agricultural Sciences, 48, 2738–2740. (in Chinese)
Wang X M, Shi J, Jin Q M, Li X, Sun S X, 2010. Handbook of Maize Diseases and Insect Pests in Field. China Agricultural Science and Technology Press, Beijing. (in Chinese)
Wang X M, Zhang Y H, Xu X D, Li H J, Wu X F, Zhang S H, Li X H. 2014. Evaluation of maize inbred lines currently used in Chinese breeding programs for resistance to six foliar diseases. The Crop Journal, 2, 213–222. 
Ward J M J, Laing M D, Cairns A L P. 1997. Management practices to reduce gray leaf spots of maize. Crop Science, 37, 1257–1262.
Ward J M J, Stromberg E L, Nowel D C, Nutter F W. 1999. Gray leaf spots, a disease of global importance in maize production. Plant Disease, 83, 884–895.
Wu J C, Ma L J, Sun Y, Bai J K. 1992. Outbreak of a new disease, Cercospora leaf spots caused by Cercospora zeae-maydis in maize. Journal of Maize Sciences, 1, 67–68. (in Chinese) 
Wu X X, Xu X F, Ma D X, Chen R Z, Li T Y, Cao Y Y. 2019. Virulence structure and its genetic diversity analyses of Blumeria graminis f. sp. tritici isolates in China. BMC Evolutionary Biology, 19, 183. 
Zhang T Y. 1983. A technique using micromanipulator for isolating singlespores and preparing slide for photomicrogragh. Acta Mycologica Sinica, 2, 197–200. (in Chinese)
Zhang X F, Li X, Cui L N, Zou C J, Yang X R. 2014. Molecular identification of race from maize gray leaf spots in Southwest China. Southwest China Journal of Agricultural Sciences, 27, 1079–1081. (in Chinese)
Zhao L P. 2016. Identification of pathogen causing maize gray leaf spots and genetic variation in C. zeina population. MSc thesis, Graduate School of Chinese Academy of Agricultural Sciences, Beijing. (in Chinese)
Zhao L P, Wang X M, Duan C X, Long S S, Li X, Li H L, He Y Q, Jin Q M, Wu X F, Song F J. 2015. Occurrence status and future spreading areas of maize gray leaf spots in China. Scientia Agricultura Sinica, 48, 3612–3626. (in Chinese) 
Zhou H P, Wu J Z, Li Y Q, Zhao W H, Xiao W X, Wu Y X, He Y Q. 2011. Epidemic of gray leaf spots of maize in Yunnan Province. Southwest China Journal of Agricultural Sciences, 24, 2207–2212. (in Chinese)


[1] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[2] Ling Ai, Ju Qiu, Jiuguang Wang, Mengya Qian, Tingting Liu, Wan Cao, Fangyu Xing, Hameed Gul, Yingyi Zhang, Xiangling Gong, Jing Li, Hong Duan, Qianlin Xiao, Zhizhai Liu. A naturally occurring 31 bp deletion in TEOSINTE BRANCHED1 causes branched ears in maize[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3322-3333.
[3] Dan Lü, Jianxin Li, Xuehai Zhang, Ran Zheng, Aoni Zhang, Jingyun Luo, Bo Tong, Hongbing Luo, Jianbing Yan, Min Deng. Genetic analysis of maize crude fat content by multi-locus genome-wide association study[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2475-2491.
[4] Chunxiang Li, Yongfeng Song, Yong Zhu, Mengna Cao, Xiao Han, Jinsheng Fan, Zhichao Lü, Yan Xu, Yu Zhou, Xing Zeng, Lin Zhang, Ling Dong, Dequan Sun, Zhenhua Wang, Hong Di. GWAS analysis reveals candidate genes associated with density tolerance (ear leaf structure) in maize (Zea mays L.)[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2046-2062.
[5] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[6] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[7] Lanjie Zheng, Qianlong Zhang, Huiying Liu, Xiaoqing Wang, Xiangge Zhang, Zhiwei Hu, Shi Li, Li Ji, Manchun Ji, Yong Gu, Jiaheng Yang, Yong Shi, Yubi Huang, Xu Zheng. Fine mapping and discovery of MIR172e, a candidate gene required for inflorescence development and lower floret abortion in maize ear[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1372-1389.
[8] Xiaoxia Guo, Wanmao Liu, Yunshan Yang, Guangzhou Liu, Bo Ming, Ruizhi Xie, Keru Wang, Shaokun Li, Peng Hou. Matching the light and nitrogen distributions in the maize canopy to achieve high yield and high radiation use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1424-1435.
[9] Yang Wang, Chunhua Mu, Xiangdong Li, Canxing Duan, Jianjun Wang, Xin Lu, Wangshu Li, Zhennan Xu, Shufeng Sun, Ao Zhang, Zhiqiang Zhou, Shenghui Wen, Zhuanfang Hao, Jienan Han, Jianzhou Qu, Wanli Du, Fenghai Li, Jianfeng Weng. A genome-wide association study and transcriptome analysis reveal the genetic basis for the Southern corn rust resistance in maize[J]. >Journal of Integrative Agriculture, 2025, 24(2): 453-466.
[10] Yulong Wang, Aizhong Yu, Pengfei Wang, Yongpan Shang, Feng Wang, Hanqiang Lü, Xiaoneng Pang, Yue Li, Yalong Liu, Bo Yin, Dongling Zhang, Jianzhe Huo, Keqiang Jiang, Qiang Chai. No-tillage with total green manure mulching increases maize yield through improved soil moisture and temperature environment and enhanced maize root structure and photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4211-4224.
[11] Hong Ren, Zheng Liu, Xinbing Wang, Wenbin Zhou, Baoyuan Zhou, Ming Zhao, Congfeng Li. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4195-4210.
[12] Fei Bao, Ping Zhang, Qiying Yu, Yunfei Cai, Bin Chen, Heping Tan, Hailiang Han, Junfeng Hou, Fucheng Zhao. Response of fresh maize yield to nitrogen application rates and  characteristics of nitrogen-efficient varieties[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3803-3818.
[13] Tianqi Wang, Jihui Tian, Xing Lu, Chang Liu, Junhua Ao, Huafu Mai, Jinglin Tan, Bingbing Zhang, Cuiyue Liang, Jiang Tian. Soybean variety influences the advantages of nutrient uptake and yield in soybean/maize intercropping via regulating root-root interaction and rhizobacterial composition[J]. >Journal of Integrative Agriculture, 2025, 24(10): 4048-4062.
[14] Xin Dong, Baole Li, Zhenzhen Yan, Ling Guan, Shoubing Huang , Shujun Li, Zhiyun Qi, Ling Tang, Honglin Tian, Zhongjun Fu, Hua Yang. Impacts of high temperature, relative air humidity, and vapor pressure deficit on the seed set of contrasting maize genotypes during flowering[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2955-2969.
[15] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
No Suggested Reading articles found!