Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (11): 2995-3002    DOI: 10.1016/S2095-3119(20)63564-X
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Analysis of DNA methylation of CD79B in MDV-infected chicken spleen
WANG Lu-lu1, ZHAO Chun-fang1, LIU Chang-jun2, ZHANG Hao1, LIAN Ling1 
1 National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China
2 Division of Avian Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

鸡马立克氏病(Marek’s disease, MD)是由马立克氏病病毒(Marek’s disease virus, MDV)诱发的免疫抑制性疾病,该病曾为全球家禽产业带来巨大的经济损失,同时也为研究由致癌病毒引起的疾病提供了理想的医学模型。 CD79B作为B细胞抗原受体复合物相关蛋白β链前体,参与B细胞的激活、增殖、分化和下游信号的传递。为了评估CD79B基因在MD中的作用,我们以前期构建的MDV攻毒群体所得到的肿瘤化的脾脏组织(Tumor spleen,TS)和对照群体的正常脾脏组织(Normal spleen, NS)为实验材料,通过Q-PCR检测了CD79B基因的mRNA表达。设计了两个方案(#20和#27号)检测CD79B基因的甲基化水平,这两个方案分别涵盖了CD79B基因5’侧翼至内含子1和内含子2至内含子3的区域。为了确定CD79B基因的甲基化水平是否参与调控mRNA表达量,我们将mRNA表达量与甲基化水平进行相关分析。实验结果表明,两个方案中CpG位点的平均甲基化水平在TS组高于NS组(P<0.05), CD79B的mRNA表达水平在TS组低于NS组(P<0.01)。当比较每个CpG位点在两组中的差异发现,在两个方案的40个CpG位点中有6个在TS与NS之间具有显著的甲基化水平差异(P<0.05)。相关分析表明TS中#20的平均甲基化水平可以影响mRNA表达量(P<0.05),而其中具有显著差异甲基化的2个CpG位点的甲基化水平与mRNA的表达量不相关(P>0.05)。该结果表明,一个区域的平均甲基化水平(不是某个差异显著的CpG位点)与该基因的表达有关,提示该区域可能因整体甲基化水平的改变而影响到转录因子的结合进而影响基因表达。总的来说,我们发现MDV感染后CD79B基因表达的改变可能是由DNA甲基化水平改变所引起的。




Abstract  
Marek’s disease (MD), an immunosuppressive disease induced by Marek’s disease virus (MDV), provides an ideal model for studying diseases caused by a carcinogenic virus.  CD79B is a B-cell antigen receptor complex-associated protein β-chain precursor which is involved in the activation, proliferation, differentiation of B-cell and the transmission of downstream signals.  This study analyzed CD79B gene mRNA expression and methylation by two schemes #20 (5´ flanking to intron 1) and #27 (intron 2 to intron 3), between MDV-infected tumorous spleens (TS) and non-infected spleens (NS).  Results showed that average methylation levels of CpGs in #20 and #27 were higher in TS than in NS (P<0.05), while, CD79B mRNA expression was lower in TS than in NS (P<0.01).  Six of 40 CpG sites showed significantly (P<0.05) different methylation levels between TS and NS.  Correlation analysis showed that the average methylation level rather than a single site methylation level in #20 affected (P<0.05) mRNA expression.  Collectively, it was found that the change of CD79B gene expression after MDV infection might be partly explained by modification of DNA methylation. 
 
Keywords:  chicken        Marek’s disease        Marek’s disease virus        DNA methylation        gene expression  
Received: 27 May 2020   Accepted:
Fund: This work was financially supported by the National Natural Science Foundation of China (31301957, 31320103905), the Young Scientist Supporting Project, the project from Beijing Key Laboratory for Animal Genetic Improvement, the Program for Changjiang Scholars and Innovative Research Team in University, China (IRT_15R62), and the China Agriculture Research Systems of MOF and MARA (CARS-40).
Corresponding Authors:  Correspondence LIAN Ling, Tel: +86-10-62731256 , E-mail: lianlinglara@126.com   
About author:  WANG Lu-lu, E-mail: lulu131522@163.com;

Cite this article: 

WANG Lu-lu, ZHAO Chun-fang, LIU Chang-jun, ZHANG Hao, LIAN Ling. 2021. Analysis of DNA methylation of CD79B in MDV-infected chicken spleen. Journal of Integrative Agriculture, 20(11): 2995-3002.

Abd-Ellatieff H A, Abou Rawash A A, Ellakany H F, Goda W M, Suzuki T, Yanai T. 2018. Molecular characterization and phylogenetic analysis of a virulent Marek’s disease virus field strain in broiler chickens in Japan. Avian Pathology, 47, 47–57.
Bogdarina I, Welham S, King P J, Burns S P, Clark A J. 2007. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circulation Research, 100, 520–526.
Catteau A, Morris J R. 2002. BRCA1 methylation: A significant role in tumour development? Seminars in Cancer Biology, 12, 359–371.
Clark M R, Campbell K S, Kazlauskas A, Johnson S A, Hertz M, Potter T A, Pleiman C, Cambier J C. 1992. The B cell antigen receptor complex: Association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science, 258, 123–126.
Coolen M W, Statham A L, Gardiner-Garden M, Clark S J. 2007. Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: Critical evaluation and improvements. Nucleic Acids Research, 35, e119.
Cragg M S, Chan H T C, Fox M D, Tutt A, Smith A, Oscier D G, Hamblin T J, Glennie M J. 2002. The alternative transcript of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood, 100, 3068–3076.
Cruse J M, Lewis R E, Wang H. 2004. Molecules, cells, and tissues of immunity. In: Immunology Guidebook. Academic Press, USA. pp. 1–15.
Cui N, Su S, Sun P, Zhang Y, Han N, Cui Z. 2016. Isolation and pathogenic analysis of virulent Marek’s disease virus field strain in China. Poultry Science, 95, 1521–1528.
Cullen B R, Zhao Y, Xu H, Yao Y, Smith L P, Kgosana L, Green J, Petherbridge L, Baigent S J, Nair V. 2011. Critical role of the virus-encoded MicroRNA-155 ortholog in the induction of marek’s disease lymphomas. PLoS Pathogens, 7, e1001305.
Doerr J R, Malone C S, Fike F M, Gordon M S, Soghomonian S V, Thomas R K, Tao Q, Murray P G, Diehl V, Teitell M A, Wall R. 2005. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. Journal of Molecular Biology, 350, 631–640.
Esteller M. 2008. Epigenetics in cancer. The New England Journal of Medicine, 358, 1148–1159.
Flaswinkel H, Reth M. 1994. Dual role of the tyrosine activation motif of the lg-a protein during signal transduction via the B cell antigen receptor. Embo Journal, 13, 83–89.
Ghotbi R, Gomez A, Milani L, Tybring G, Syvanen A C, Bertilsson L, Ingelman-Sundberg M, Aklillu E. 2009. Allele-specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics, 9, 208–217.
Heidari M, Wang D, Delekta P, Sun S H. 2016. Marek’s disease virus immunosuppression alters host cellular responses and immune gene expression in the skin of infected chickens. Veterinary Immunology and Immunopathology, 180, 21–28.
Ho Y, Elefant F, Liebhaber S A, Cooke N E. 2006. Locus control region transcription plays an active role in long-range gene activation. Molecular Cell, 23, 365–375.
Jiang D, Suna M, Youa L N, Lu K, Gao L, Hu C X, Wu S Y, Chang G L, Tao H M, Zhang D Y. 2019. DNA methylation and hydroxymethylation are associated with the degree of coronary atherosclerosis in elderly patients with coronary heart disease. Life Sciences, 224, 241–248.
Jie H, Lian L, Qu L J, Zheng J X, Hou Z C, Xu G Y, Song J Z, Yang N. 2013. Differential expression of Toll-like receptor genes in lymphoid tissues between Marek’s disease virus-infected and noninfected chickens. Poultry Science, 92, 645–654.
Johnson S A, Pleiman C M, Pao L, Schneringer J, Hippen K, Cambier J C. 1995. Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. Immunology, 155, 4596–4603.
Katoh M. 2005. Epithelial-mesenchymal transition in gastric cancer (review). Oncology, 27, 1677–1683.
Kim J S, Han J, Shim Y M, Park J, Kim D H. 2005. Aberrant methylation of H-cadherin (CDH13) promoter is associated with tumor progression in primary nonsmall cell lung carcinoma. Cancer, 104, 1825–1833.
Kulis M, Esteller M. 2010. DNA methylation and cancer. Advances in Genetics, 70, 27–56.
Li J, Hu W X, Luo S Q, Xiong D H, Sun S, Wang Y P, Bu X F, Liu J, Hu J. 2019. Promoter methylation induced epigenetic silencing of DAZAP2, a downstream effector of p38/MAPK pathway, in multiple myeloma cells. Cell Signal, 60, 136–145.
Li K Y, Lian L, Yang N, Qu L J. 2015. Temporal expression and DNA hypomethylation profile of CD30 in Marek’s disease virus-infected chicken spleens. Poultry Science, 94, 1165–1174.
Li X, Lian L, Zhang D X, Qu L J, Yang N. 2014. Gga-miR-26a targets NEK6 and suppresses Marek’s disease lymphoma cell proliferation. Poultry Science, 93, 1097–1105.
Lian L, Qu L J, Chen Y M, Lamont S J, Yang N. 2012a. A systematic analysis of miRNA transcriptome in marek’s disease virus-induced lymphoma reveals novel and differentially expressed miRNAs. PLoS ONE, 7, e51003.
Lian L, Qu L J, Sun H Y, Chen Y M, Lamont S J, Liu C J, Yang N. 2012b. Gene expression analysis of host spleen responses to Marek’s disease virus infection at late tumor transformation phase. Poultry Science, 91, 2130–2138.
Liu H C, Kung H J, Fulton J E, Morgan R W, Cheng H H. 2001. Growth hormone interacts with the Marek’s disease virus SORF2 protein and is associated with disease resistance in chicken. Proceedings of the National Academy of Sciences of the United States of America, 98, 9203–9208.
Luo J, Yu Y, Chang S, Tian F, Zhang H M, Song J Z. 2012. DNA methylation fluctuation induced by virus infection differs between MD-resistant and -susceptible chickens. Frontiers in Genetics, 3, 20.
Luo J, Yu Y, Zhang H M, Tian F, Chang S, Cheng H H, Song J Z. 2011. Down-regulation of promoter methylation level of CD4 gene after MDV infection in MD-susceptible chicken line. BMC Proceedings, 5(Suppl. 4), S7.
McPherson M C, Delany M E. 2016. Virus and host genomic, molecular, and cellular interactions during Marek’s disease pathogenesis and oncogenesis. Poultry Science, 95, 412–429.
Meydan H, Yildiz M A, Dodgson J B, Cheng H H. 2011. Allele-specific expression analysis reveals CD79B has a cis-acting regulatory element that responds to Marek’s disease virus infection in chickens. Poultry Science, 90, 1206–1211.
Niikura M, Kim T, Hunt H D, Burnside J, Morgan R W, Dodgson J B, Cheng H H. 2007. Marek’s disease virus up-regulates major histocompatibility complex class II cell surface expression in infected cells. Virology, 359, 212–219.
Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W. 2009. Methylation status and neurodegenerative markers in Parkinson disease. Clinical Chemistry, 55, 1852–1860.
Osterrieder N, Kamil J P, Schumacher D, Tischer B K, Trapp S. 2006. Marek’s disease virus: From miasma to model. Nature Reviews Microbiology, 4, 283–294.
Parnas O, Corcoran D L, Cullen B R. 2014. Analysis of the mRNA targetome of microRNAs expressed by marek’s disease virus. American Society for Microbiology, 5, e01060–e01073.
Pieper K, Grimbacher B, Eibel H. 2013. B-cell biology and development. Allergy and Clinical Immunology, 131, 959–971.
Dal Porto J, Gauld S, Merrell K, Mills D, Pugh-Bernard A, Cambier J. 2004. B cell antigen receptor signaling 101. Molecular Immunology, 41, 599–613.
Reichlin A, Hu Y, Meffre E, Nagaoka H, Gong S C, Kraus M, Rajewsky K, Nussenzweig M C. 2001. B cell development is arrested at the immature B cell stage in mice carrying a mutation in the cytoplasmic domain of immunoglobulin beta. Experimental Medicine, 193, 13–23.
Walsh C P, Chaillet J R, Bestor T H. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20, 116–117.
Wang L L, You Z, Wang M Y, Yuan Y M, Liu C J, Yang N, Zhang H, Lian L. 2020. Genome-wide analysis of circular RNAs involved in Marek’s disease tumourigenesis in chickens. RNA Biology, 17, 517–527.
Wang Y M, Fischle W, Cheung W, Jacobs S, Khorasanizadeh S, Allis C D. 2004. Beyond the double helix: Writing and reading the histone code. Novartis Foundation Symposium, 259, 3–17.
Wray G A, Hahn M W, Abouheif E, Balhoff J P, Pizer M, Rockman M V, Romano L A. 2003. The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution, 20, 1377–1419.
Yin L, Cai W J, Liu C X, Chen Y Z, Hu J M, Jiang J F, Li H A, Cui X B, Chang X Y, Zhang W J, Sun K, Li F. 2013. Analysis of PTEN methylation patterns in soft tissue sarcomas by MassARRAY spectrometry. PLoS ONE, 8, e62971.
You Z, Zhang Q, Liu C, Song J, Yang N, Lian L. 2019. Integrated analysis of lncRNA and mRNA repertoires in Marek’s disease infected spleens identifies genes relevant to resistance. BMC Genomics, 20, 245.
[1] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[2] ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang. Insights into the effects of pulsed antimicrobials on the chicken resistome and microbiota from fecal metagenomes[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1857-1869.
[3] WANG Yong-li, HUANG Chao, YU Yang, CAI Ri-chun, SU Yong-chun, CHEN Zhi-wu, ZHENG Maiqing, CUI Huan-xian.

Dietary aflatoxin B1 induces abnormal deposition of melanin in the corium layer of the chicken shank possibly via promoting the expression of melanin synthesis-related genes [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1847-1856.

[4] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[5] CUI Huan-xian, LUO Na, GUO Li-ping, LIU Lu, XING Si-yuan, ZHAO Gui-ping, WEN Jie. TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken[J]. >Journal of Integrative Agriculture, 2023, 22(3): 853-863.
[6] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[7] LIU Xiao-jing, WANG Yong-li, LIU Li, LIU Lu, ZHAO Gui-ping, WEN Jie, JIA Ya-xiong, CUI Huan-xian. Potential regulation of linoleic acid and volatile organic compound contents in meat of chickens by PLCD1[J]. >Journal of Integrative Agriculture, 2023, 22(1): 222-234.
[8] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[9] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[10] SUN Yu-hang, ZHAI Gui-ying, PANG Yong-jia, LI Rui, LI Yu-mao, CAO Zhi-ping, WANG Ning, LI Hui, WANG Yu-xiang. PPAR gamma2: The main isoform of PPARγ that positively regulates the expression of the chicken Plin1 gene[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2357-2371.
[11] ZENG Xian-ying, HE Xin-wen, MENG Fei, MA Qi, WANG Yan, BAO Hong-mei, LIU Yan-jing, DENG Guo-hua, SHI Jian-zhong, LI Yan-bing, TIAN Guo-bin, CHEN Hua-lan. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2086-2094.
[12] LI Yu-dong, BAI Xue, LIU Xin , WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of genome-wide association study and selection signatures reveals genetic determinants for skeletal muscle production traits in an F2 chicken population[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2065-2075.
[13] CHEN Hong-yan, CHENG Bo-han, MA Yan-yan, ZHANG Qi, LENG Li, WANG Shou-zhi, LI Hui. HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling via directly enhancing JAK2 expression[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1740-1754.
[14] WEI Yuan-hang, ZHAO Xi-yu, SHEN Xiao-xu, YE Lin, ZHANG Yao, WANG Yan, LI Di-yan, ZHU Qing, YIN Hua-dong. The expression, function, and coding potential of circular RNA circEDC3 in chicken skeletal muscle development[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1444-1456.
[15] WANG Dan-dan, ZHANG Yan-yan, TENG Meng-lin, WANG Zhang, XU Chun-lin, JIANG Ke-ren, MA Zheng, LI Zhuan-jian, TIAN Ya-dong, Kang Xiang-tao, LI Hong, LIU Xiao-jun. Integrative analysis of hypothalamic transcriptome and genetic association study reveals key genes involved in the regulation of egg production in indigenous chickens[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1457-1474.
No Suggested Reading articles found!