Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (6): 1554-1562    DOI: 10.1016/S2095-3119(20)63272-5
Special Issue: 植物抗病遗传合辑Plant Disease-resistance Genetics
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Two novel gene-specific markers at the Pik locus facilitate the application of rice blast resistant alleles in breeding
TIAN Da-gang1, 2, CHEN Zi-qiang1, LIN Yan1, CHEN Zai-jie1, LUO Jia-mi1, JI Ping-sheng4, YANG Li-ming3, WANG Zong-hua2, WANG Feng1 
1 Fujian Key Laboratory of Genetic Engineering for Agriculture/Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, P.R.China
2 State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, P.R.China
4 Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

由稻瘟病菌引起的稻瘟病,是一种制约世界水稻生产的真菌病害。长期的生产实践表明,将持久广谱的抗性基因导入高产水稻品种,是防治该病害的首选。位于第11号染色体上的抗瘟基因 Pik 基因座,至少含有 Pi-1、Pik-h、Pi-k、Pik-m、Pik-s和Pik-p等6个重要的抗病基因;但由于当前缺乏适用的分子标记,限制了该基因座功能基因在抗病育种中的广泛应用。为了更好地在分子育种中利用该基因座的功能基因,开发Pik 基因座功能基因的特异性标记并用其分型种质资源具有重要意义。基于此,本研究通过对Pi-1、Pik-h、Pi-k、Pik-m、Pik-s、Pik-p等功能基因和非功能基因位点之间的序列广泛比较,获得了一个在这些功能基因启动子区-1015-bp处Pik-p缺失19-bp和一个在这些功能基因末端+6816-bp处Pi-1插入11-bp的的多态性位点,并据此分别开发出两个能精确区分出Pik-p、Pi-1和K型功能等位位点的Pikp-Del和Pi1-In标记;进一步通过结合稻瘟病菌室内接种和已有的dCAPS标记Pi1FNP和dCAPS-795鉴定,对这两个标记鉴定结果的准确性进行了评价。结果显示,我们鉴定的基因型与稻瘟病人工接种抗性表现和两个dCAPS标记的鉴定的结果完全一致。另外,我们还利用Pikp-Del和Pi1-In标记对531份水稻品种和育种材料进行了基因分型,结果表明,5份材料含有Pik-p基因,8份材料含有Pi-1基因,说明这两个基因在我国水稻稻瘟病抗性育种中还没有被充分利用;另外还有256份携带K型等位基因,这些材料可作为抗稻瘟病育种的种质资源。综上,Pikp-Del和Pi1-In标记可以实现对Pik-p、Pi-1和K型功能等位基因的精准检测,结合标记分型的种质资源,将会加速Pik-p 和Pi-1以及Pik 基因座的其它功能基因在抗病育种中的应用。




Abstract  
Blast, a disease caused by Magnaporthe oryzae, is a major constraint for rice production worldwide.  Introgression of durable blast resistance genes into high-yielding rice cultivars has been considered a priority to control the disease.  The blast resistance Pik locus, located on chromosome 11, contains at least six important resistance genes, but these genes have not been widely employed in resistance breeding since existing markers hardly satisfy current breeding needs due to their limited scope of application.  In this study, two PCR-based markers, Pikp-Del and Pi1-In, were developed to target the specific InDel (insertion/deletion) of the Pik-p and Pi-1 genes, respectively.  The two markers precisely distinguished Pik-p, Pi-1, and the K-type alleles at the Pik locus, which is a necessary element for functional genes from rice varieties.  Results also revealed that only several old varieties contain the two genes, of which nearly half carry the K-type alleles.  Therefore, these identified varieties can serve as new gene sources for developing blast resistant rice.  The two newly developed markers will be highly useful for the use of Pik-p, Pi-1 and other resistance genes at the Pik locus in marker-assisted selection (MAS) breeding programs.
Keywords:  rice        blast disease        molecular marker        Pik-p        Pi-1        K-type alleles  
Received: 17 February 2020   Accepted:
Fund: This research was funded by the National Natural Science Foundation of China (31640006), the China Postdocotral Science Foundation (2019M662219), the Youngth Program of Fujian Academy of Agricultural Sciences (YC2019004), and the Projection of Public Welfare of Fujian Province (2017R1019-10).
Corresponding Authors:  Correspondence YANG Li-ming, E-mail: yangliming@njfu.edu.cn; WANG Zong-hua, E-mail: wangzh@fafu.edu.cn; WANG Feng, E-mail: wf@fjage.org   

Cite this article: 

TIAN Da-gang, CHEN Zi-qiang, LIN Yan, CHEN Zai-jie, LUO Jia-mi, JI Ping-sheng, YANG Li-ming, WANG Zong-hua, WANG Feng . 2021. Two novel gene-specific markers at the Pik locus facilitate the application of rice blast resistant alleles in breeding. Journal of Integrative Agriculture, 20(6): 1554-1562.

Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. 2008. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 180, 2267–2276.
Brar D, Khush G. 1997. Alien introgression in rice. Plant Molecular Biology, 35, 35–47.
Campbe M A, Chen D, Ronald P C. 2004. Development of co-dominant amplified polymorphic sequence markers in rice that flank the Magnaporthe grisea resistance gene Pi7(t) in recombinant inbred line 29. Phytopathology, 94, 302–307.
Chen Z, Tian D, Lian T, Chen Z, Hu C, Wang F, Chen S. 2016. Characterization of the genotypes at the rice blast resistance Pik locus in 229 rice cultivars and important breeding materials. Fujian Journal of Agriculture Science, 31, 553–559. (in Chinese)
Deng Y, Zhai K, Xie Z, Yang D Y, Zhu X D, Liu J Z, Wang X, Qin P, Yang Y Z, Zhang G M, Li Q, Zhang J F, Wu S Q, Milazzo J I, Mao B Z, Wang E T, Xie H A, Tharreau D, He Z H. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 355, 962–965.
Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H. 2010. Identification of the blast resistance gene pit in rice cultivars using functional markers. Theoretical and Applied Genetics, 121, 1357–1367.
He C, Chen T, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Yu X, Wang C L. 2014. Genotypic analysis of blast resistance genes Pi-ta and Pi-b for Japonica rice varieties and lines in Jiangsu Province. Jiangsu Agriculture Science, 30, 921–927. (in Chinese)
Hu J, Li X, Wu C. 2010. Gene pyramiding to improve the resistance of rice hybrids to brown plant hopper and blast disease using molecular marker-assisted selection. Molecular Plant Breeding, 8, 1180–1187. (in Chinese)
Hua L, Wang W, Chen S, Wang C, Zeng L, Yang J, Zhu X, Su J. 2015. Development of specific DNA markers for detecting the rice blast resistance gene alleles Pi2/9/z-t. Chinese Journal of Rice Science, 29, 305–310. (in Chinese)
Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. 2012. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theoretical and Applied Genetics, 125, 1047–1055.
Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. 2007. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theoretical and Applied Genetics, 115, 1163–1177.
Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y. 2012. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Molecular Breeding, 30, 1679–1688.
Khush G S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology, 59, 1–6.
Kiyosawa S. 1987. With genetic view on the mechanism of resistance and virulence. Japanese Journal of Iden, 41, 89–92. (in Japanese)
Kumari A, Das A, Devanna B, Thakur S, Singh P, Singh N, Sharma T. 2013. Mining of rice blast resistance gene Pi54 shows effect of single nucleotide polymorphisms on phenotypic expression of the alleles. European Journal of Plant Pathology, 137, 55–65.
Li C G, Wang D, Peng S S, Chen Y, Su P, Chen J B, Zheng L M, Tan X Q, Liu J L, Xiao Y H, Kang H X, Zhang D Y. 2019. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. Rice, 12, 47.
Li J, Li C, Chen Y, Lei C, Ling Z. 2005. Evaluation of twenty-two blast resistance genes in Yunnan using monogenetic rice lines. Acta Phytophylacica Sinica, 32, 113–119. (in Chinese)
Ma J, Lei C, Xu X, Hao K, Wang J L, Cheng Z J, Ma X D, Ma J, Zhou K N, Zheng X, Guo X P, Wu F Q, Lin Q B, Wang C M. 2015. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Molecular Plant-Microbe Interactions, 28, 558–568.
Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.
Nawaz M A, Rehman H M, Baloch F S, Ijaz B, Ali M A, Khan I A, Lee J D, Chung G, Yang S H. 2017. Genome and transcriptome-wide analysis of cellulose synthase gene superfamily in soybean. Journal of Plant Physiology, 215, 163–175.
Ramkumar G, Srinivasarao K, Madhan Mohan K, Sudarshan I, Sivaranjani A K P, Gopalakrishna K, Neeraja C N, Balachandran S M, Sundaram R M, Prasad M S, Shobha Rani N, Rama Prasad A M, Viraktamath B C, Madhav M S. 2011. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54(Pikh). Molecular Breeding, 27, 129–135.
RoyChowdhury M, Jia Y, Jackson A, Jia M H, Fjellstrom R, Cartwright R D. 2012. Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers. Euphytica, 184, 35–46.
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 40, 1023–1028.
Tian D G, Chen Z J, Chen Z Q, Zhou Y C, Wang Z H, Wang F, Chen S B. 2016. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars. Rice, 9, 19.
Tian D G, Lin Y, Chen Z Q, Chen Z J, Yang F, Wang F, Wang Z H, Wang M. 2020. Exploring the distribution of resistance alleles at the Pi2/9 locus in major rice producing areas of China by a novel Indel marker. Plant Disease, doi: org/10.1094/PDIS-10-19-2187-RE.
Tsunematsu H, Yanoria M J T, Ebron L A, Hayashi N, Ando I, Kato H, Imbe T, Khush G S. 2000. Development of monogenic lines for rice blast resistance. Breeding Science, 50, 229–234.
Wang B H, Ebbole D J, Wang Z H. 2017. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 16, 2746–2760.
Wang F Q, Chen Z H, Xu Y, Wang J, Li W Q, Fan F J, Chen L Q, Tao Y J, Zhong W G, Yang J. 2019. Development and application of the functional marker for the broad-spectrum blast resistance gene PigmR in rice. Scientia Agriculture Sinica, 52, 955–967. (in Chinese)
Wang L, Xu X K, Lin F, Pan Q H. 2009. Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology, 99, 900–905.
Wang W J, Zhou J Y, Wang C Y, Su J, Feng J Q, Chen B, Feng A Q, Yang J Y, Chen S, Zhu X Y. 2017. Distribution of eight rice blast resistance genes in indica hybrid rice in China. Chinese Journal of Rice Science, 31, 299–306. (in Chinese).
Xu Y, McCouch S R, Zhang Q. 2005. How can we use genomics to improve cereals with rice as a reference genome? Plant Molecular Biology, 59, 7–26.
Yang X, Zhu C, Ruan H, Du Y, Guan R, Chen F. 2008. Pathogenic types of Magnaporthe grisea Barr. and resistance of some rice cultivars to the pathogens in Fujian Province. Journal of Fujian Agricultural and Forestry University, 37, 243–247. (in Chinese)
Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. 2011. The Pik-presistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theoretical and Applied Genetics, 122, 1017–1028.
Zeigler R S, Tohme J, Nelson R, Levy M, Correa-Victoria F J. 1994. Lineage exclusion: A proposal for linking blast population analysis to resistance breeding. In: Zeigler R S, Leong S A, Teng P S, eds., Rice Blast Disease. CAB International, Wallingford. pp. 267–292.
Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q. 2011. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytologist, 189, 321–334.
Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q. 2014. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE, 9, e98067.
Zhang C, Ma J, Xiao J, Liu Y, Xin A, Ren Y. 2010. The blast resistance of 24 monogenic rice lines to prevalence physiologic races of Heilongjiang and analysis of pathogenicity association. Chinese Agricultural Science Bulletin, 26, 233–237. (in Chinese)
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[8] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[9] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[10] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[11] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[12] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[13] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[14] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[15] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

No Suggested Reading articles found!