Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (11): 3230-3244    DOI: 10.1016/j.jia.2022.08.129
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum
LIU Lei1, WANG Heng-bo1, LI Yi-han1,2, CHEN Shu-qi1, WU Ming-xing1, DOU Mei-jie1, QI Yi-yin1, FANG Jing-ping3, ZHANG Ji-sen1,2
1 Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R.China

2 State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530004, P.R.China

3 College of Life Sciences, Fujian Normal University, Fuzhou 350007, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

甘蔗具有庞大、复杂的多倍体基因组,阻碍了其基因组学和分子标记辅助选择的研究进展。简便易用的微卫星分子标记(SSR)因其理想的遗传属性而备受关注,但由于此前缺乏高质量染色体水平的甘蔗基因组,这些标记尚未在甘蔗全基因组范围内进行开发。本研究从甘蔗高贵种和割手密种基因组中鉴定到744,305和361,638个候选SSRs。为验证这些预测SSR的可靠性,使用11份代表性甘蔗材料(包括高贵种、割手密种、大茎野生种和现代栽培种)对1,200对种间特异SSR引物的多态性进行检测。结果表明,共有660对SSR标记在这些材料中呈现为种间多态性。此外,随机选取了100对SSR标记,对39份具有代表性的甘蔗材料进行遗传多样性分析。利用100条多态性引物共获得320个等位位点,每对SSR标记的等位位点2-7个。遗传多样性分析结果表明,这些种质资源主要分布在4个类群中,分别为I类(14份割手密种)、II类(2份高贵种)、III类(18份现代甘蔗杂交种)和IV类(5份大茎野生种)。实验结果证明了本研究中基于甘蔗基因组预测所获得的SSR分子标记的可靠性。基于实验验证的大量SSR分子标记的开发对甘蔗遗传连锁图谱构建、比较基因组分析、全基因组关联分析和分子标记辅助选择等遗传研究具有重要意义。



Abstract  

Sugarcane has a large, complex, polyploid genome that has hindered the progress of genomic research and molecular marker-assisted selection.  The user-friendly SSR markers have attracted considerable attention owing to their ideal genetic attributes.  However, these markers were not characterized and developed at the genome-wide scale due to the previously lacking high-quality chromosome-level assembled sugarcane genomes.  In this present study, 744 305 and 361 638 candidate SSRs were identified from the genomes of Sofficinarum and Sspontaneum, respectively.  We verified the reliability of the predicted SSRs by using 1 200 interspecific SSR primer pairs to detect polymorphisms among 11 representative accessions of Saccharum, including Sspontaneum, Sofficinarum, Srobustum, and modern sugarcane hybrid.  The results showed that 660 SSR markers displayed interspecific polymorphisms among these accessions.  Furthermore, 100 SSRs were randomly selected to detect the genetic diversity for 39 representative Saccharum accessions.  A total of 320 alleles were generated using 100 polymorphic primers, with each marker ranging from two to seven alleles.  The genetic diversity analysis revealed that these accessions were distributed in four main groups, including group I (14 Sspontaneum accessions), group II (two Sofficinarum accessions), group III (18 modern sugarcane hybrid accessions), and group IV (five Srobustum accessions).  Experimental verification supported the reliability of the SSR markers based on genome-wide predictions.  The development of a large number of SSR markers based on wet experiments is valuable for genetic studies, including genetic linkage maps, comparative genome analysis, genome-wide association studies, and marker-assisted selection in Saccharum.

Keywords:  Saccharum        genome-wide        simple repeat sequences (SSR)        microsatellite        molecular markers  
Received: 28 January 2022   Accepted: 14 July 2022
Fund: This work was supported by the National Key Research and Development Program of China (2021YFF1000101-5), the Science and Technology Planting Project of Guangdong Province, China (2019B020238001), the Natural Science Foundation of Fujian Province, China (2019J05066), the National Natural Science Foundation of China (41906096), and the Guangdong Laboratory for Lingnan Modern Agriculture and the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, China.  
About author:  Correspondence FANG Jing-ping, E-mail:jinphia@163.com; ZHANG Ji-sen, E-mail: zjisen@126.com

Cite this article: 

LIU Lei, WANG Heng-bo, LI Yi-han, CHEN Shu-qi, WU Ming-xing, DOU Mei-jie, QI Yi-yin, FANG Jing-ping, ZHANG Ji-sen. 2022. Genome-wide development of interspecific microsatellite markers for Saccharum officinarum and Saccharum spontaneum. Journal of Integrative Agriculture, 21(11): 3230-3244.

Aitken K S, Jackson P A, McIntyre C L. 2005. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theoretical and Applied Genetics, 110, 789–801.
Aitken K S, Li J C, Jackson P, Piperidis G, McIntyre C L. 2006. AFLP analysis of genetic diversity within Saccharum officinarum and comparison with sugarcane cultivars. Australian Journal of Agricultural Research, 57, 1167–1184.
Almeida C M A D, Lima S E N D, Lima G S D A, Brito J Z D, Silva M V D. 2009. Caracterização molecular de cultivares de cana-de-açúcar utilizando marcadores ISSR. Ciência E Agrotecnologia, 33, 1771–1776. (in Portuguese)
Amar M H, Biswas M K, Zhang Z, Guo W W. 2011. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Scientia Horticulturae, 128, 220–227.
Andrés J A, Bogdanowicz S M. 2012. Isolating microsatellite loci: Looking back, looking ahead. In: Orgogozo V, Rockman M, eds., Molecular Methods for Evolutionary Genetics. vol. 772. Springer, New York, USA. pp. 211–232. 
Andru S, Pan Y B, Thongthawee S, Burner D M, Kimbeng C A J T. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics, 123, 77–93.
Arruda P. 2012. Genetically modified sugarcane for bioenergy generation. Current Opinion in Biotechnology, 23, 315–322.
Baert-Desurmont S, Charbonnier F, Houivet E, Ippolito L, Mauillon J, Bougeard M, Abadie C, Malka D, Duffour J, Desseigne F. 2016. Clinical relevance of 8q23, 15q13 and 18q21 SNP genotyping to evaluate colorectal cancer risk. European Journal of Human Genetics, 24, 99–105.
Baraket G, Chatti K, Saddoud O, Abdelkarim A B, Mars M, Trifi M, Hannachi A S. 2011. Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of fig, Ficus carica L., genetic resources in Tunisia. Plant Molecular Biology Reporter, 29, 171–184.
Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando M S. 2009. The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theoretical and Applied Genetics, 118, 653–669.
Bertani R P, Perera M F, Joya C M, Henriquez D D, Funes C, Chaves S, González V, Welin B, Cuenya M I, Castagnaro A P. 2021. Genetic diversity and population structure of Acidovorax avenae subsp. avenae isolated from sugarcane in Argentina. Plant Pathology, 70, 1719–1732.
Besse P, Taylor G, Carroll B, Berding N, Burner D, McIntyre C L. 1998. Assessing genetic diversity in a sugarcane germplasm collection using an automated AFLP analysis. Genetica, 104, 143–153.
Brand-Miller J C, Barclay A W. 2017. Declining consumption of added sugars and sugar-sweetened beverages in Australia: a challenge for obesity prevention. The American Journal of Clinical Nutrition, 105, 854–863.
Brandes E W, Sartoris G B. 1936. Sugarcane: Its origin and improvement. In: Yearbook of the United States Department of Agriculture. United States Government Printing Office, Washington, USA. pp. 561–624.
Cai Q, Aitken K S, Fan Y H, Piperidis G, Jackson P, McIntyre C L. 2005. A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Science, 169, 976–984.
Chandra A, Jain R, Solomon S, Shrivastava S, Roy A K. 2013. Exploiting EST databases for the development and characterisation of 3 425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses. BMC Research Notes, 6, 47.
Chen C, Zhou P, Choi Y A, Huang S, Gmitter F G. 2006. Mining and characterizing microsatellites from citrus ESTs. Theoretical and Applied Genetics, 112, 1248–1257.
Cho Y G, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch S R, Park W D, Ayres N, Cartinhour S. 2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 100, 713–722.
Cordeiro G M, Pan Y B, Henry R J. 2003. Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Science, 165, 181–189.
Creste S, Sansoli D M, Tardiani A C S, Silva D N, Pinto L R. 2014. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Toxicology, 12, 150–154.
Cui J, Cheng J, Nong D, Peng J, Hu Y, He W, Zhou Q, Dhillon N P S, Hu K. 2017. Genome-wide analysis of simple sequence repeats in bitter gourd (Momordica charantia). Frontiers in Plant Science, 8, 1103.
D’Hont A, Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N. 1996. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Molecular and General Genetics, 250, 405–413.
Daugrois J H, Grivet L, Roques D, Hoarau J Y, Lombard H, Glaszmann J C, D’Hont A. 1996. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theoretical and Applied Genetics, 92, 1059–1064.
Deguchi K, Takeuchi H, Touge T, Kamoda M, Tsukaguchi M, Sasaki I, Nishioka M. 1996. Significance of cognitive function in the elicitation of sympathetic skin response in healthy humans. Journal of the Autonomic Nervous System, 61, 123–127.
Deng P, Wang M, Feng K, Cui L, Tong W, Song W, Nie X. 2016. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Scientific Reports, 6, 32224.
Devarumath R M, Kalwade S B, Kawar P G, Sushir K V. 2012. Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech, 14, 334–344.
Duan Y P, Chen W G, Li M S, Li X H, Zhang S H. 2006. The genetic diversity among 27 maize populations based on SSR data. Scientia Agricultura Sinica, 39, 1102–1113. (in Chinese)
Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J M, Zyprian E, Moreira F M, Grando M S. 2013. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biology, 13, 39.
Fraser L G, Harvey C F, Crowhurst R N, De Silva H N. 2004. EST-derived microsatellites from Actinidia species and their potential for mapping. Theoretical and Applied Genetics, 108, 1010–1016.
Fu P C, Zhang Y Z, Ya H Y, Gao Q B. 2016. Characterization of SSR genomic abundance and identification of SSR markers for population genetics in Chinese jujube (Ziziphus jujuba Mill.). PeerJ, 4, e1735.
Giovannini D, Dettori M T, Leone A, Liverani A, Sirri S, Tellarini S, Verde I. 2012. Assessment of genetic variability in Italian heritage peach resources from Emilia-Romagna using microsatellite markers. The Journal of Horticultural Science and Biotechnology, 87, 435–440.
Hajmansoor S, Bihamta M R, Alisoltani A. 2013. Genetic diversity among and within Iranian and non-Iranian barely (Hordeum vulgare L.) genotypes using SSR and storage proteins markers. Biochemical Systematics and Ecology, 46, 7–17.
Halsted C H, Devlin A M. 2001. Mutations in human glutamate carboxypeptidase II gene impacting folate metabolism, and detection of affected individuals. U.S. Patent Application 09/805,293[P]. 2002-1-24.
He Q, Li X W, Liang G L, Ji K, Guo Q G, Yuan W M, Zhou G Z, Chen K S, van de Weg W E, Gao Z S. 2011. Genetic diversity and identity of chinese loquat cultivars/Accessions (Eriobotrya japonica) using apple SSR markers. Plant Molecular Biology Reporter, 29, 197–208.
Hirano R, Ishii H, Htun Oo T, Gilani S A, Kikuchi A, Watanabe K N. 2011. Propagation management methods have altered the genetic variability of two traditional mango varieties in Myanmar, as revealed by SSR. Plant Genetic Resources, 9, 404–410.
Hunsigi G. 1993. Production of Sugarcane: Theory and Practice. Springer-Verlag, Berlin Heidelberg, Germany. ISBN: 978-3-642-78135-3.
Iniguez-Luy F L, Voort A V, Osborn T C. 2008. Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theoretical and Applied Genetics, 117, 977–985.
Iwasaki H, Stewart P W, Dilley W G, Holt M S, Steinbrueck T D, Wells S A, Donis-Keller H. 1992. A minisatellite and a microsatellite polymorphism within 1.5 kb at the human muscle glycogen phosphorylase (PYGM) locus can be amplified by PCR and have combined informativeness of PIC 0.95. Genomics, 13, 7–15.
Jones E, Dupal M, Dumsday J, Hughes L, Forster J. 2002. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theoretical and Applied Genetics, 105, 577–584.
Kantety R V, La Rota M, Matthews D E, Sorrells M E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology, 48, 501–510.
Lawson M J, Zhang L. 2006. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 7, R14.
Levinson G, Gutman G A. 1987. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4, 203–221.
Li Z, Wang G, Liu X, Wang Z, Zhang M, Zhang J. 2021. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum. BMC Genomics, 22, 456.
Lim S, Notley-McRobb L, Lim M, Carter D A. 2004. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genetics and Biology, 41, 1025–1036.
Liu C, Zhang Q, Yao X, Zhong C, Yan C, Huang H. 2016. Characterization of genome-wide simple sequence repeats and application in interspecific genetic map integration in kiwifruit. Tree Genetics & Genomes, 12, 21.
Liu F, Hu Z, Liu W, Li J, Wang W, Liang Z, Wang F, Sun X. 2016. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development. Scientific Reports, 6, 18947.
Liu R, Koyanagi K O, Chen S, Kishima Y. 2012. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus. The Plant Journal, 72, 817–828.
Lv B C, Su Q H, Xin X X, Sun J, Liu X X, Liu Y, Yang D L. 2019. Construction of genetic linkage map by SSR markers for wheat ILs population. Journal of Gansu Agricultural University, 54, 35–42. (in Chinese)
Ma P, Zhang X, Chen L, Zhao Q, Zhang Q, Hua X, Wang Z, Tang H, Yu Q, Zhang M, Ming R, Zhang J. 2020. Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology, 20, 422.
Morgante M, Hanafey M, Powell W. 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194–200.
Nachimuthu V V, Muthurajan R, Duraialaguraja S, Sivakami R, Pandian B A, Ponniah G, Gunasekaran K, Swaminathan M, Suji K K, Sabariappan R. 2015. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in Oryza sativa. Rice, 8, 30.
Nawaz S, Khan F A, Tabasum S, Zakria M, Saeed A, Iqbal M Z. 2010. Phylogenetic relationships among Saccharum clones in Pakistan revealed by RAPD markers. Genetics and Molecular Research, 9, 1673–1682.
Nayak S N, Song J, Villa A, Pathak B, Ayala-Silva T, Yang X, Todd J, Glynn N C, Kuhn D N, Glaz B. 2014. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction. PLoS ONE, 9, e110856.
Olatoye M O, Clark L V, Wang J, Yang X, Yamada T, Sacks E J, Lipka A E. 2019. Evaluation of genomic selection and marker-assisted selection in Miscanthus and energycane. Molecular Breeding, 39, 171.
Oliveira K M, Pinto L R, Marconi T G, Margarido G R A, Pastina M M, Teixeira L H M, Figueira A V, Ulian E C, Garcia A A F, Souza A P. 2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular Breeding, 20, 189–208.
Pan Y B, Liu P. 2010. Development of a genetic linkage map for Louisiana sugarcane: New microsatellite (SSR) DNA markers identified for LCP 85-384. Journal of the American Society of Sugar Cane Technologists, 30, 137.
Pan Y B, Tew T L, Schnell R J, Viator R P, Richard E P, Grisham M P, White W H. 2006. Microsatellite DNA marker-assisted selection of Saccharum spontaneum cytoplasm-derived germplasm. Sugar Tech, 8, 23–29.
Pang X, Tan X, Wei L, Liang F, Zhang J, Lyu P, Cheng Q, Huang Q, Zhou Q. 2019. Genetic diversity analysis for 35 sugarcane germplasm resources and construction of DNA fingerprint. Journal of Southern Agriculture, 50, 1157–1164.
Parida S K, Kalia S K, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T R, Srivastava P S, Singh N K, Mohapatra T. 2009. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theoretical and Applied Genetics, 118, 327–338.
Pinto L R, Oliveira K M, Marconi T, Garcia A A F, Ulian E C, De Souza A P. 2006. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding, 125, 378–384.
Pinto L R, Oliveira K M, Ulian E C, Garcia A A F, De Souza A P. 2004. Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome, 47, 795–804.
Potts S M, Han Y, Khan M A, Kushad M M, Rayburn A L, Korban S S. 2012. Genetic diversity and characterization of a core collection of malus germplasm using simple sequence repeats (SSRs). Plant Molecular Biology Reporter, 30, 827–837.
Ramakrishnan M, Ceasar S A, Duraipandiyan V, Al-Dhabi N A, Ignacimuthu S. 2016. Using molecular markers to assess the genetic diversity and population structure of finger millet (Eleusine coracana (L.) Gaertn.) from various geographical regions. Genetic Resources and Crop Evolution, 63, 361–376.
Selvi A, Nair N V, Balasundaram N, Mohapatra T. 2003. Evaluation of maize microsatellite markers for genetic diversity analysis and fingerprinting in sugarcane. Genome, 46, 394–403.
Da Silva C M, Mangolin C A, Mott A S, Machado M F P S. 2008. Genetic diversity associated with in vitro and conventional bud propagation of Saccharum varieties using RAPD analysis. Plant Breeding, 127, 160–165.
Da Silva J A G. 2001. Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology, 24, 155–159.
Singh R B, Singh B, Singh R K. 2017. Study of genetic diversity of sugarcane (Saccharum) species and commercial varieties through TRAP molecular markers. Indian Journal of Plant Physiology, 22, 332–338.
Singh R B, Singh B, Singh R K. 2019. Development of potential dbEST-derived microsatellite markers for genetic evaluation of sugarcane and related cereal grasses. Industrial Crops and Products, 128, 38–47.
Singh R K, Singh R B, Singh S P, Sharma M L. 2011. Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 182, 335.
Skinner J C, Hogarth D M, Wu K K, Heinz D J. 1987. Sugarcane improvement through breeding. In: Heinz D J, ed., Developments in Crop Science. vol. 11. pp. 409–453.Elsevier, Amsterdam.
Souza M C P D, Silva J N, Almeida C. 2013. Differential detection of transposable elements between Saccharum species. Genetics and Molecular Biology, 36, 408–412.
Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452.
Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 100, 697–712.
Thiel T, Michalek W, Varshney R, Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 106, 411–422.
Tong Z J, Jiao F C, Xiao B G. 2015. Analysis of SSR loci in Nicotina tabacum genome and its two ancestral species genome. Scientia Agricultura Sinica, 48, 2108–2117. (in Chinese)
Waclawovsky A J, Sato P M, Lembke C G, Moore P H, Souza G M. 2010. Sugarcane for bioenergy production: An assessment of yield and regulation of sucrose content. Plant Biotechnology Journal, 8, 263–276.
Wang L, Zheng Y, Ding S, Zhang Q, Chen Y, Zhang J. 2017. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology, 17, 109.
Wang P, Wang C Y, Zhang L X, Cong L, Zhu Z X, Lu X C. 2019. Development of SSR molecular markers with sorghum polymorphism using re-sequencing. Biotechnology Bulletin, 35, 217–223.
Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S, Chang L, Guo W, Zhang T. 2015. Genome-wide mining, characterization and development of microsatellite markers in Gossypium species. Scientific Reports, 5, 10638.
Wang Y W, Samuels T D, Wu Y Q. 2011. Development of 1,030 genomic SSR markers in switchgrass. Theoretical and Applied Genetics, 122, 677–686.
Wang Z, Pan Y, Luo J, You Q, Xu L, Zhang H, Que Y. 2020. SSR-based genetic identity of sugarcane clones and its potential application in breeding and variety extension. Sugar Tech, 22, 367–378.
Xu J, Liu L, Xu Y, Chen C, Rong T, Ali F, Zhou S, Wu F, Liu Y, Wang J, Cao M, Lu Y. 2013. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Research, 20, 497–509.
Xu M, Liu X, Wang J W, Teng S Y, Shi J Q, Li Y Y, Huang M R. 2017. Transcriptome sequencing and development of novel genic SSR markers for Dendrobium officinale. Molecular Breeding, 37, 18.
Xu M L, Melchinger A E, Xia X C, Lübberstedt T. 1999. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Molecular and General Genetics, 261, 574–581.
Yao W, Yu A L, Xu J S, Zhou H, Zhang M Q, Chen R K. 2005. A simple and quick method for extracting sugarcane genomic DNA. Journal of Agricultural Biotechnology, 13, 121–122. (in Chinese)
Yang S, Li X, Huang F, Huang Y, Liu X, Wu J, Wang Q, Deng Z, Chen R, Zhang M. 2018. A new method based on SNP of nrDNA-ITS to identify Saccharum spontaneum and its progeny in the genus Saccharum. PLoS ONE, 13, e0197458.
You Q, Yang X, Peng Z, Islam M S, Sood S, Luo Z, Comstock J, Xu L, Wang J. 2019. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. Theoretical and Applied Genetics, 132, 2829–2845.
Yu J K, La Rota M, Kantety R V, Sorrells M E. 2004. EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, 271, 742–751.
Zane L, Bargelloni L, Patarnello T. 2010. Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1–16.
Zawedde B M, Ghislain M, Magembe E, Amaro G B, Grumet R, Hancock J. 2015. Characterization of the genetic diversity of Uganda’s sweet potato (Ipomoea batatas) germplasm using microsatellites markers. Genetic Resources and Crop Evolution, 62, 501–513.
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics, 50, 1565–1573.
Zhang J, Zhou M, Walsh J, Zhu L, Ming R. 2013. Sugarcane Genetics and Genomics. In: Moore P H, Botha F C, eds., Sugarcane: Physiology, Biochemistry, and Functional Biology. John Wiley & Sons, Inc., Hoboken, New Jersey, USA. pp. 623–643.
Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan M A, Zhou Y, Gu C, Zhang X, Han Z, Korban S S, Li S, Han Y. 2012. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics, 13, 537.
Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, et al. 2022. Genomic insights into the recent chromosome reduction and polyploidization of complex autopolyploid sugarcane S. spontaneum. Nature Genetics, 54, 885–896 .
Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q. 2007. A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Research, 14, 37–45.

[1] CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui. Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1697-1705.
[2] Syed Adeel Zafar, Amjad Hameed, Muhammad Amjad Nawaz, MA Wei, Mehmood Ali Noor, Muzammil Hussain, Mehboob-ur-Rahman. Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. >Journal of Integrative Agriculture, 2018, 17(04): 726-738.
[3] Ghulam Shabir, Kashif Aslam, Abdul Rehman Khan, Muhammad Shahid, Hamid Manzoor, Sibgha Noreen, Mueen Alam Khan, Muhammad Baber, Muhammad Sabar, Shahid Masood Shah, Muhammad Arif. Rice molecular markers and genetic mapping: Current status and prospects[J]. >Journal of Integrative Agriculture, 2017, 16(09): 1879-1891.
[4] LIU Guo-xiang, ZHANG Li-chao, XIA Chuan, JIA Ji-zeng, ZHANG Jun-cheng, ZHANG Qiang, DONG Chun-hao, KONG Xiu-ying, LIU Xu. Mapping of the heading date gene HdAey2280 in Aegilops tauschii[J]. >Journal of Integrative Agriculture, 2016, 15(12): 2719-2725.
No Suggested Reading articles found!