Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (5): 1170-1176    DOI: 10.1016/S2095-3119(19)62614-6
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |
Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes
Syariful Mubarok1, Hiroshi Ezura2, Anas1, Kusumiyati1, Neni Rostini1, Erni Suminar1, Gungun Wiguna3, 4  
1 Department of Agronomy, Universitas Padjadjaran, Sumedang 45363, Indonesia
2 Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan 
3 Graduate Program of Plant Science, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
4 Vegetable Crops Research Institute, Ministry of Agriculture, Bandung 40391, Indonesia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Shelf life is an important breeding trait in tomato, especially for the tomato production in subtropical and tropical regions.  Previously we have isolated and characterized ethylene receptor mutants, Sletr1-1 and Sletr1-2 from mutant population based on Micro-Tom cultivar.  Sletr1-1 showed insensitivity to ethylene while Sletr1-2 showed reduced sensitivity to ethylene.  We also have demonstrated that the traits are useful for extending fruit shelf life of the hybrid tomato cultivars.  For commercializing the hybrid cultivars, the seed quality is another important trait.  In this study, we evaluated the effects of the Sletr1-1 and Sletr1-2 mutations on the seed quality characteristics of F1 hybrid lines generated by crossing Sletr1-1 and Sletr1-2 with three commercial tomato cultivars, Intan, Mutiara and Ratna.  Sletr1-1 mutation conferred insensitivity to ethylene in the F1 hybrid seedlings, resulting in negative effects including reduced germination rate, vigor index and emergence speed index.  Interestingly Sletr1-2 mutation had almost no effect on the seed quality characteristics of the F1 hybrid lines, suggesting that Sletr1-2 was suitable for producing high quality of hybrid seeds.
Keywords:  ethylene receptor        mutant        hybrid quality seed        tomato  
Received: 11 May 2018   Accepted:
Fund: This work was supported by a grant of Superior Applied Research of Higher Education (006/ADD/SP2H/DRPM/VIII/2017) from the Ministry of Research, Technology and Higher Education, Indonesia.
Corresponding Authors:  Correspondence Syariful Mubarok, Tel: +62-22-7796320, Fax: +62-22-7796316, E-mail: syariful.mubarok@unpad.ac.id   
About author: 

Cite this article: 

Syariful Mubarok, Hiroshi Ezura, Anas, Kusumiyati, Neni Rostini, Erni Suminar, Gungun Wiguna. 2019. Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes. Journal of Integrative Agriculture, 18(5): 1170-1176.

AOSA (Association of Official Seed Analysts). 1983. Seed Vigor Testing Handbook. No. 32.  Association of Official Seed Analysts, Las Cruces, NM.
Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A. 2013. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Frontiers in Plant Science, 4, 6–19.
Beaudoin N, Serizet C, Gosti F, Giraudat J. 2000. Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell, 12, 1103–1115.
Bleecker A B, Estelle M A, Somerville C, Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science, 241, 1086–1089.
Bleecker A B, Schaller G E. 1996. The mechanism of ethylene perception. Plant Physiology, 111, 653–660.
Corbineau F, Rudnicki R M, Come D. 1998. Induction of secondary dormancy in sunflower seeds by hightemperature. Possible involvement of ethylene biosynthesis. Physiologia Plantarum, 73, 368–373.
Corbineau F, Xia O, Bailly C, Bouteau H E. 2014. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 5, 1–13.
Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology, 61, 651–679.
Egley G H. 1982. Ethylene stimulation of weed seed germination. Agriculture and Forestry Bulletin, 5, 13–18.
Esashi Y. 1991. Ethylene and seed germination. In: Mattoo A K, Suttle I C, eds., The Plant Hormone Ethylene. CRC Press, Boca Raton, Florida. pp. 133–157.
Gallardo M, Del Mar Delgado M, Sanchez-Calle I M, Matilla A J. 1991. Ethylene production and 1-aminocyclopropane-1-carboxylic acid conjugation in thermoinhibited Cicer arietinum L. seeds. Plant Physiology, 97, 122–127.
Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. 2000. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. The Plant Cell, 12, 1117–1126.
ISTA (International Seed Testing Association). 2017. International Rule for Seed Testing 2017. The International Seed Testing Association, Switzerland.
Kepczynski J. 1985. The role of ethylene in seed germination. Acta Horticulturae, 167, 47–56.
Khan A A. 1994. ACC-derived ethylene production, a sensitive test for seed vigor. Journal of American Society for Horticultural Science, 119, 1083–1090.
Lanahan M B, Yen H, Giovannoni J J, Klee H L. 1994. The Never Ripe mutation blocks ethylene perception in tomato. The Plant Cell, 6, 521–530.
Leubner-Metzger G, Meins F. 2000. Sense transformation reveals a novel role for class I β-1,3-glucanase in tobacco seed germination. The Plant Journal, 23, 215–221.
Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R, Meins F. 1998. Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1,3-glucanase during tobacco seed germination. Plant Molecular Biology, 38, 785–795.
Maguirre J D. 1962. Speeds of germination - aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176–177.
Matilla A J. 2000. Ethylene in seed formation and germination. Seed Science Research, 10, 111–126.
Mubarok S, Hoshikawa K, Okabe, Y, Yano R, Tri M D,  Ariizumi T, Ezura H. 2019. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato. Molecular Genetics and Genomics, 294, 301–313.
Mubarok S, Okabe Y, Fukuda N, Ariizumi T, Ezura H. 2015. Potential use of a weak ethylene receptor mutant, Sletr1-2, as breeding material to extend fruit shelf life of tomato. Journal of Agricultural and Food Chemistry, 63, 7995–8007.
Mubarok S, Okabe Y, Fukuda N, Ariizumi T, Ezura H. 2016. Favorable effects of the weak ethylene receptor mutation Sletr1-2 on postharvest fruit quality changes in tomatoes. Postharvest Biology and Technology, 120, 1–9.
Murashige T, Skoog F A. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Science Reserach, 20, 55–67.
Okabe Y, Asamizu E, Saito T, Matsukura C, Ariizumi T, Bres C, Rothan C, Mizaguchi T, Ezura H. 2011. Tomato TILLING Technology: Development of a reverse genetic tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiology, 52, 1994–2005.
Prusinski J, Khan A A. 1990. Relationship of ethylene production to stress alleviation in seeds of lettuce cultivars. Journal of the American Society for Horticultural Science, 115, 294–298.
Siriwitayawan G, Robert L G, Bruce A D. 2003. Seed germination of ethylene perception mutants of tomato and Arabidopsis. Seed Science Research, 13, 303–314.
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J J. 2002. A MADS-box gene necessary for fruit ripening at tomato Ripening-inhibitor (Rin) locus. Science, 296, 343–346.
Wilkinson J, Lanahan M, Yen H, Giovannoni J, Klee H. 1995. An ethylene-inducible component of signal transduction encoded by Never-ripe. Science, 270, 1807–1809.
[1] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[2] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[3] GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2508-2520.
[4] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
[5] Hakan FIDAN, Pelin SARIKAYA, Kubra YILDIZ, Bengi TOPKAYA, Gozde ERKIS, Ozer CALIS. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2170-2179.
[6] LI Hui-juan, JIAO Zhi-xin, NI Yong-jing, JIANG Yu-mei, LI Jun-chang, PAN Chao, ZHANG Jing, SUN Yu-long, AN Jun-hang, LIU Hong-jie, LI Qiao-yun, NIU Ji-shan. Heredity and gene mapping of a novel white stripe leaf mutant in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1743-1752.
[7] YAN Zhi-yong, ZHAO Mei-sheng, MA Hua-yu, LIU Ling-zhi, YANG Guang-ling, GENG Chao, TIAN Yan-ping, LI Xiang-dong. Biological and molecular characterization of tomato brown rugose fruit virus and development of quadruplex RT-PCR detection[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1871-1879.
[8] WU Li-hong, ZHOU Cao, LONG Gui-yun, YANG Xi-bin, WEI Zhi-yan, LIAO Ying-jiang, YANG Hong, HU Chao-xing . Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables[J]. >Journal of Integrative Agriculture, 2021, 20(3): 755-763.
[9] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
[10] ZHANG Gui-fen, MA De-ying, WANG Yu-sheng, GAO You-hua, LIU Wan-xue, ZHANG Rong, FU Wen-jun, XIAN Xiao-qing, WANG Jun, KUANG Meng, WAN Fang-hao. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1912-1917.
[11] Oluwashola OLANIYAN, Neus RODRíGUEZ-GASOL, Nathalie CAYLA, Eleonor MICHAUD, Steve D. WRATTEN.
Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 338-349.
[12] Tewodros MULUGETA, Jean-Baptiste MUHINYUZA, Reinette GOUWS-MEYER, Lerato MATSAUNYANE, Erik ANDREASSON, Erik ALEXANDERSSON .
Botanicals and plant strengtheners for potato and tomato cultivation in Africa
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 406-427.
[13] LU Jing, Sun Mei-hong, MA Qi-jun, KANG Hui, LIU Ya-jing, HAO Yu-jin, YOU Chun-xiang . MdSWEET17, a sugar transporter in apple, enhances drought tolerance in tomato[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2041-2051.
[14] ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1579-1586.
[15] ZHU Xin-xin, NI Yong-jing, HE Rui-shi, JIANG Yu-mei, LI Qiao-yun, NIU Ji-shan. Genetic mapping and expressivity of a wheat multi-pistil gene in mutant 12TP[J]. >Journal of Integrative Agriculture, 2019, 18(3): 532-538.
No Suggested Reading articles found!