Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2170-2179    DOI: 10.1016/S2095-3119(20)63335-4
Special Issue: 植物病理合辑Plant Protection—Plant Pathology 植物病毒合辑Plant Virus
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey
Hakan FIDAN1, Pelin SARIKAYA1, Kubra YILDIZ2, Bengi TOPKAYA2, Gozde ERKIS3, Ozer CALIS1
1 Plant Protection Department, Faculty of Agriculture, Akdeniz University, The Campus, Konyaalti 07070, Antalya, Turkey
2 Plant Health Department, Bati Akdeniz Agricultural Research Institute (BATEM), Muratpasa 07050, Antalya, Turkey
3 Antalya Directorate of Agricultural Quarantine, Republic of Turkey Ministry of Agriculture and Forestry, Muratpasa 07050, Antalya, Turkey
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Tomato brown rugose fruit virus (ToBRFV) causes severe fruit loss in tomato (Solanum lycopersicum) and pepper (Capsicum annuum) plants.  It is an emerging Tobamovirus that is spreading globally.  The major challenge is to develop a reliable method for the detection of the virus, and to better characterize the symptoms it causes.  The aims of this study, therefore, were to characterize the symptom development on tomato and pepper plants, and to establish a reliable detection method for the virus.  Following infection of the tomato and pepper plants with ToBRFV, the leaves turned chlorotic, mosaic or mottled, while the fruit became rugose, necrotic and marbled, and showed discoloration with yellow or brown spots.  Transmission electron microscopy (TEM) revealed single rod-like virus particles characteristic of the Tobamoviruses.  Classical reverse transcription PCR (RT-PCR) and quantitative PCR (qPCR) with specific primers and probes confirmed that the virus is ToBRFV.  We found that the resistance genes from tomato, Tm-22, and pepper, L1, L2, L3 and L4, did not confer resistance to ToBRFV.  Here, we present a PCR-based method as a diagnostic test for detecting ToBRFV in infected seeds.  This method will help to prevent further spread of the virus in commercial seeds.
Keywords:   tomato        pepper        Tobamovirus        ToBRFV        resistance  
Received: 29 March 2020   Accepted:
Corresponding Authors:  Correspondence Ozer CALIS, Tel: +90-242-3106536, Fax: +90-242-3102479, E-mail: ozercalis@akdeniz.edu.tr   
About author:  Hakan FIDAN, E-mail: hakanfidan@akdeniz.edu.tr;

Cite this article: 

Hakan FIDAN, Pelin SARIKAYA, Kubra YILDIZ, Bengi TOPKAYA, Gozde ERKIS, Ozer CALIS. 2021. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey. Journal of Integrative Agriculture, 20(8): 2170-2179.

Adams M J, Antoniw J F, Kreuze J. 2009. Virgaviridae: A new family of rod-shaped plant viruses. Archives of Virology, 154, 1967–1972.
Agarwal S, Rao A V. 2000. Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163, 739–744.
Antignus Y, Lachman O, Pearlsman M, Maslenin L, Rosner A. 2008. A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars. Plant Disease, 92, 1033–1037.
Cambrón-Crisantos J M, Rodríguez-Mendoza J, Valencia-Luna J B, Alcasio-Rangel S, García-Ávila C J, López-Buenfil J A, Ochoa-Martínez D L. 2018. First report of Tomato brown rugose fruit virus (ToBRFV) in Michoacan, Mexico. Revista Mexicana de Fitopatología, 37, 1–8.
De Ronde D, Butterbach P, Kormelink R. 2014. Dominant resistance against plant viruses. Frontiers in Plant Science, 5, 307.
Dombrovsky A, Smith E. 2017. Seed transmission of Tobamoviruses: Aspects of global disease distribution. In: Jimenez-Lopez J C, ed., Seed Biology. IntechOpen, UK. pp. 234–260.
Doyle J J, Doyle J I. 1990. Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
EPPO. 2019. European and Mediterranean Plant Protection Organization. [2020-8-18]. https://gd.eppo.int/taxon/TOBRFV
FAO (Food and Agriculture Organization of the United Nations). 2019. Food and agriculture organization of the united nations. [2020-7-17]. http://www.fao.org/faostat/en/#data/QC/visualize
Fidan H, Sarikaya P, Calis O. 2019. First report of Tomato brown rugose fruit virus on tomato in Turkey. New Disease Reports, 39, 18.
Fidan H, Barut M. 2019. Screening of L4 resistance status to pepper mild mottle virus (PMMoV) and characterization by molecular methods. Mediterranean Agricultural Sciences, 32, 297–305. (in Turkish)
Genda Y, Kanda A, Hamada H, Sato K, Ohnishi J, Tsuda S. 2007. Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L(4) gene-mediated resistance in Capsicum spp. Phytopathology, 97, 787–793.
Gilardi P, Garcia-Luque I, Serra M T. 2004. The coat protein of tobamovirus acts as elicitor of both L2 and L4 gene-mediated resistance in Capsicum. Journal of General Virology, 85, 2077–2085.
Hamada H, Takeuchi S, Kiba A, Tsuda S, Hikichi Y, Okuno T. 2002. Amino acid changes in Pepper mild mottle virus coat protein that affect L3 gene-mediated resistance in pepper. Journal of General Plant Pathology, 68, 155–162.
Hanssen I M. Lapidot M, Thomma B P H J. 2010. Emerging viral diseases of tomato crops. Molecular Plant Microbe Interactions, 23, 539–548.
Lanfermeijer F C, Warmink J, Hille J. 2005. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. Journal of Experimental Botany, 56, 2925–2933.
Liu H J, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, et al. 2020. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell, 32, 1397–1413.
Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I, Elad N, Tam Y, Sela N, Abu-Ras A, Ezra N, Haberman A, Yitzhak L, Lachman O, Dombrovsky A. 2017. A new israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE, 12, e0170429.
Matsumoto K, Sawada H, Matsumoto K, Hamada H, Yoshimoto E, Ito T, Takeuchi S, Tsuda S, Suzuki K, Kobayashi K, Kiba A, Okuno T, Hikichi Y, Suzuki K, Kobayashi K. 2008. The coat protein gene of tobamovirus P(0) pathotype is a determinant for activation of temperature-insensitive L (1a)-gene-mediated resistance in Capsicum plants. Archives of Virology, 153, 645–650.
Menzel W, Knierim D, Winter S, Hamacher J, Heupel M. 2019. First report of Tomato brown rugose fruit virus infecting tomato in Germany. New Disease Reports, 39, 1.
Meshi T, Motoyoshi F, Maeda T, Yoshiwoka S, Watanabe H, Okada Y. 1989. Mutations in the tobacco mosaic-virus 30-kD protein gene overcome Tm-2 resistance in tomato. The Plant Cell, 1, 515–522.
Palevitch D, Craker L E. 2012. Nutritional and medical importance of red pepper (Capsicum spp.). Journal of Herbs, Spices and Medicinal Plants, 3, 55–83.
Salem N, Mansour A, Ciuffo M, Falk B W, Turina M. 2016. A new tobamovirus infecting tomato crops in Jordan. Archives of Virology, 161, 503–506.
Skelton A, Buxton-Kirk A, Ward R, Harju V, Frew L, Fowkes A, Long M, Negus A, Forde S, Adams I P, Pufal H, McGreig S, Weekes R, Fox A. 2019. First report of Tomato brown rugose fruit virus in tomato in the United Kingdom. New Disease Reports, 40, 12.
Smith E, Dombrovsky A. 2019. Aspects in Tobamovirus Management in Intensive Agriculture.  IntechOpen, London.
Story E N, Kopec R E, Schwartz S J, Harris G H, 2010. An update on the health effects of tomato lycopene. Annual Review of Food Science and Technology, 1, 189–210.
Tomita R, Sekine K T, Mizumoto H, Sakamoto M, Murai J, Kiba A, Hikichi Y, Suzuki K, Kobayashi K. 2011. Genetic basis for the hierarchical interaction between Tobamovirus spp. and L resistance gene alleles from different pepper species. Molecular Plant Microbe Interactions, 24, 108–117.
Tripodi P, Kumar S. 2019. The Capsicum crop: An introduction. In: Ramchiary N, Kole C, eds., The Capsicum Genome.Compendium of Plant Genomes, Springer Nature, Switzerland. pp. 1–8.
Xu C, Sun X, Taylor A, Jiao C, Xu Y, Cai X, Wang X, Ge C, Pan G, Wang Q, Fei Z, Wang Q. 2017. Diversity, distribution, and evolution of tomato viruses in China uncovered by small RNA sequencing. Journal of Virology, 91, e00173–e00192.
[1] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[2] TU Ke-ling, YIN Yu-lin, YANG Li-ming, WANG Jian-hua, SUN Qun. Discrimination of individual seed viability by using the oxygen consumption technique and headspace-gas chromatography-ion mobility spectrometry[J]. >Journal of Integrative Agriculture, 2023, 22(3): 727-737.
[3] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
[4] Carlos Kwesi TETTEY, YAN Zhi-yong, MA Hua-yu, ZHAO Mei-sheng, GENG Chao, TIAN Yan-ping, LI Xiang-dong . Tomato mottle mosaic virus: characterization, resistance gene effectiveness, and quintuplex RT-PCR detection system[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2641-2651.
[5] WANG Ya-di, LI Fei, ZHANG Xin, LIU Ting-li, LIANG Wen-xing, LI De-long. PnSCR82, a small cysteine-rich secretory protein of Phytophthora nicotianae, can enhance defense responses in plants[J]. >Journal of Integrative Agriculture, 2022, 21(3): 751-761.
[6] YAN Zhi-yong, ZHAO Mei-sheng, MA Hua-yu, LIU Ling-zhi, YANG Guang-ling, GENG Chao, TIAN Yan-ping, LI Xiang-dong. Biological and molecular characterization of tomato brown rugose fruit virus and development of quadruplex RT-PCR detection[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1871-1879.
[7] WU Li-hong, ZHOU Cao, LONG Gui-yun, YANG Xi-bin, WEI Zhi-yan, LIAO Ying-jiang, YANG Hong, HU Chao-xing . Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables[J]. >Journal of Integrative Agriculture, 2021, 20(3): 755-763.
[8] ZHANG Dan-dan, XIAO Yu-tao, XU Peng-jun, YANG Xian-ming, WU Qiu-lin, WU Kong-ming. Insecticide resistance monitoring for the invasive populations of fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 783-791.
[9] ZHANG Gui-fen, MA De-ying, WANG Yu-sheng, GAO You-hua, LIU Wan-xue, ZHANG Rong, FU Wen-jun, XIAN Xiao-qing, WANG Jun, KUANG Meng, WAN Fang-hao. First report of the South American tomato leafminer, Tuta absoluta (Meyrick), in China[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1912-1917.
[10] Oluwashola OLANIYAN, Neus RODRíGUEZ-GASOL, Nathalie CAYLA, Eleonor MICHAUD, Steve D. WRATTEN.
Bactericera cockerelli (Sulc), a potential threat to China’s potato industry
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 338-349.
[11] Tewodros MULUGETA, Jean-Baptiste MUHINYUZA, Reinette GOUWS-MEYER, Lerato MATSAUNYANE, Erik ANDREASSON, Erik ALEXANDERSSON .
Botanicals and plant strengtheners for potato and tomato cultivation in Africa
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 406-427.
[12] LU Jing, Sun Mei-hong, MA Qi-jun, KANG Hui, LIU Ya-jing, HAO Yu-jin, YOU Chun-xiang . MdSWEET17, a sugar transporter in apple, enhances drought tolerance in tomato[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2041-2051.
[13] ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1579-1586.
[14] Syariful Mubarok, Hiroshi Ezura, Anas, Kusumiyati, Neni Rostini, Erni Suminar, Gungun Wiguna. Impacts of Sletr1-1 and Sletr1-2 mutations on the hybrid seed quality of tomatoes[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1170-1176.
[15] ZHU Yan, Miles Dyck, CAI Huan-jie, SONG Li-bing, CHEN Hui. The effects of aerated irrigation on soil respiration, oxygen, and porosity[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2854-2868.
No Suggested Reading articles found!