Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (12): 2694-2703    DOI: 10.1016/S2095-3119(18)62009-X
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular cloning and functional identification of an apple flagellin receptor MdFLS2 gene
QI Chen-hui1, ZHAO Xian-yan1, JIANG Han1, LIU Hai-tao2, WANG Yong-xu1, HU Da-gang1, HAO Yu-jin1
1 National Key Laboratory of Crop Biology/Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs of China/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, P.R.China
2 Shandong Yihui Detection Technology Co., Ltd., Tai’an 271000, P.R.China
Download:  PDF (4711KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  
The leucine-rich repeat receptor kinase flagellin-sensing 2 gene (MdFLS2; Gene ID: MDP0000254112) was cloned from Royal Gala apple (Malus×domestica Borkh.).  This gene contained a complete open reading frame of 3 474 bp that encoded 1 158 amino acids.  The phylogenetic tree indicated that Prunus persica FLS2 exhibited the highest sequence similarity to MdFLS2.  The PlantCare database suggests that the promoter sequence of MdFLS2 contains several typical cis-acting elements, including ethylene-, gibberellin-, salicylic acid-, and drought-responsive elements.  Quantitative real-time PCR analysis showed that MdFLS2 was widely expressed in the different tissues of the apple and most highly expressed in the leaves.  Furthermore, MdFLS2 was significantly induced by the flagellin elicitor peptide flg22.  Treatment of the apple seedling leaves with flg22 resulted in an increase in leaf callose levels with increased treatment duration.  An increase in the production of O2 along with the expression of disease-related genes was also observed.  An oxidative burst was detected in the treated seedlings, but not in the control seedlings, indicating that flg22 had stimulated the expression of the MdFLS2 gene and its downstream target genes.  Furthermore, the ectopic expression of MdFLS2 complemented the function of the Arabidopsis fls2 mutant and conferred enhanced flg22 tolerance to the transgenic Arabidopsis, suggesting that MdFLS2 acts as a positive regulator in the response to pathogens in apple.
Keywords:  apple        flagellin receptor        flagellin elicitor peptide        MdFLS2        pathogen infection  
Received: 11 January 2018   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31601728 and 31430074), the Ministry of Education of China (IRT15R42), the Natural Science Foundation of Shandong Province, China (ZR2016CQ13 and SDAIT-06-03), the Young Scientists Funds of Shandong Agricultural University, China (564024 and 24024).
Corresponding Authors:  CorrespondenceHUD a-gang, Tel/Fax: +86-538-8246151,E-mail:fap_296566@163.com; HAO Yu-jin, E-mail: haoyujin@sdau.edu.cn   
About author:  QI Chen-hui, E-mail: 18763823286@163.com;

Cite this article: 

QI Chen-hui, ZHAO Xian-yan, JIANG Han, LIU Hai-tao, WANG Yong-xu, HU Da-gang, HAO Yu-jin. 2018. Molecular cloning and functional identification of an apple flagellin receptor MdFLS2 gene. Journal of Integrative Agriculture, 17(12): 2694-2703.

Albert M, Jehle A K, Fürst U, Chinchilla D, Boller T, Felix G. 2013. A two-hybrid-receptor assay demonstrates heteromer formation as switch-on for plant immune receptors. Plant Physiology, 163, 1504–1509.
Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. 2014. Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 20, 47–54.
Boller T, Felix G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.
Cai R, Lewis J, Yan S, Liu H, Clarke C R, Campanile F, Almeida N F, Studholme D J, Lindeberg M, Schneider D, Zaccardelli M, Setubal J C, Morales-Lizcano N P, Bernal A, Coaker G, Baker C, Bender C L, Leman S, Vinatzer B A. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens, 7, e1002130.
Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 18, 465–476.
Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009. One for all: The receptor-associated kinase BAK1. Trends in Plant Science, 14, 535–541.
Clarke C R, Chinchilla D, Hind S R, Taguchi F, Miki R, Ichinose Y, Martin G B, Leman S, Felix G, Vinatzer B A. 2013. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytologist, 200, 847–860.
Dou D, Zhou J M. 2012. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host & Microbe, 12, 484–495.
Felix G, Duran J D, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18, 265–276.
Gómez-Gómez L, Boller T. 2000. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5, 1003–1011.
Gómez-Gómez L, Felix G, and Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal, 18, 277–284.
Gust A A, Biswas R, Lenz H D, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. The Journal of Biological Chemistry, 282, 32338–32348.
Hao G, Pitino M, Duan Y, Stover E. 2016. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 29, 132–142.
Hu D G, Sun C H, Zhang Q Y, An J P, You C X, Hao Y J. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics, 12, e1006273.
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 16, 3496–3507.
Liu M, Lei L, Powers C, Liu Z, Campbell K G, Chen X, Bowden R L, Carver B F,Yan L. 2016. TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. Theoretical and Applied Genetics, 129, 345–355.
Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A,  Devarenne T P, He P, Shan L. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 332, 1439–1442.
Meyer A, Pühler A, Niehaus K. 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta, 213, 214–222.
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19613–19618.
Monaghan J, Zipfel C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15, 349–357.
Ottmann C, Luberacki B, Küfner I, Koch K, Brunner F, Weyand M, Mattinen L, Pirhonen M,  Anderluh G, Seitz H U, Nürnberger T, Oecking C. 2009. A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciencesof the United States of America, 106, 10359–10364.
Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell, 140, 805–820.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
Thomma B P, Nürnberger T, Joosten M H. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23, 4–15.
Trdá L, Fernandez O, Boutrot F, Heloir M, Kelloniemi J, Daire X, Adrian M, Clement C, Zipfel C, Dorey S. 2013. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytologist, 201, 1371–1384.
Win J, Chaparro-Garcia A, Belhaj K, Saunders D G O, Yoshida K,  Dong S, Schornack S,  Zipfel C, Robatzek S, Hogenhout S A, Kamoun S. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 77, 235–247.
Zhao T, Jiang J, Liu G, He S, Zhang H, Chen X, Li J,  Xu X. 2016. Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC Plant Biology, 16, 51.
Zipfel C, Oldroyd G E D. 2017. Plant signalling in symbiosis and immunity. Nature, 543, 328–336.
[1] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
[2] Yusong Liu, Yiwei Jia, Yuhao Li, Jifa Han, Qianwei Liu, Xuewen Li, Zhijun Zhang, Chao Li, Fengwang Ma. The MdMYB306-MdERF114 module promotes tolerance to cadmium by regulating MdATG16 in apple[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2640-2654.
[3] Xinyue Zhang, Xinhua Zhang, Wenwen Sun, Meng Lv, Yefei Gu, Sarfaraz Hussain, Xiaoan Li, Maratab Ali, Fujun Li. MdERF2 regulates cuticle wax formation by directly activating MdLACS2, MdCER1 and MdCER6 of apple fruit during postharvest[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2229-2239.
[4] Ru Bao, Tianli Guo, Zehua Yang, Chengyu Feng, Junyao Wu, Xiaomin Fu, Liu Hu, Changhai Liu, Fengwang Ma. Overexpression of the apple m6A demethylase gene MdALKBH1A regulates resistance to heat stress and fixed-carbon starvation[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1489-1502.
[5] Hongchen Jia, Youwei Du, Yuanyuan Liu, Shuanghong Wang, Yan Wang, Sadia Noorin, Mark L. Gleason, Rong Zhang, Guangyu Sun. Transcriptional activation of MdDEF30 by MdWRKY75 enhances apple resistance to Cytospora canker [J]. >Journal of Integrative Agriculture, 2025, 24(3): 1108-1125.
[6] Mengli Yang, Jian Jiao, Yiqi Liu, Ming Li, Yan Xia, Feifan Hou, Chuanmi Huang, Hengtao Zhang, Miaomiao Wang, Jiangli Shi, Ran Wan, Kunxi Zhang, Pengbo Hao, Tuanhui Bai, Chunhui Song, Jiancan Feng, Xianbo Zheng. Genome-wide investigation of defensin genes in apple (Malus×domestica Borkh.) and in vivo analyses show that MdDEF25 confers resistance to Fusarium solani [J]. >Journal of Integrative Agriculture, 2025, 24(1): 161-175.
[7] Qianwei Liu, Shuo Xu, Lu Jin, Xi Yu, Chao Yang, Xiaomin Liu, Zhijun Zhang, Yusong Liu, Chao Li, Fengwang Ma. Silencing of early auxin responsive genes MdGH3-2/12 reduces the resistance to Fusarium solani in apple[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3012-3024.
[8] Lei Tang, Jizheng Yi, Xiaoyao Li.

Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification [J]. >Journal of Integrative Agriculture, 2024, 23(3): 901-922.

[9] Jing Su, Lingcheng Zhu, Pingxing Ao, Jianhui Shao, Chunhua Ma. Genome-wide identification, molecular evolution, and functional characterization of fructokinase gene family in apple reveal its role in improving salinity tolerance[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3723-3736.
[10] LI Xiang-lu, SU Qiu-fang, JIA Rong-jian, WANG Zi-dun, FU Jiang-hong, GUO Jian-hua, YANG Hui-juan, ZHAO Zheng-yang. Comparison of cell wall changes of two different types of apple cultivars during fruit development and ripening[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2705-2718.
[11] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
[12] ZHANG Li-hua, ZHU Ling-cheng, XU Yu, LÜ Long, LI Xing-guo, LI Wen-hui, LIU Wan-da, MA Feng-wang, LI Ming-jun, HAN De-guo. Genome-wide identification and function analysis of the sucrose phosphate synthase MdSPS gene family in apple[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2080-2093.
[13] LÜ Chun-yang, GE Shi-shuai, HE Wei, ZHANG Hao-wen, YANG Xian-ming, CHU Bo, WU Kong-ming. Accurate recognition of the reproductive development status and prediction of oviposition fecundity in Spodoptera frugiperda (Lepidoptera: Noctuidae) based on computer vision[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2173-2187.
[14] ZHANG Bo, FAN Wen-min, ZHU Zhen-zhen, WANG Ying, ZHAO Zheng-yang. Functional analysis of MdSUT2.1, a plasma membrane sucrose transporter from apple[J]. >Journal of Integrative Agriculture, 2023, 22(3): 762-775.
[15] YUE Meng, LI Wen-jing, JIN Shan, CHEN Jing, CHANG Qian, Glyn JONES, CAO Yi-ying, YANG Gui-jun, LI Zhen-hong, Lynn J. FREWER. Farmers’ precision pesticide technology adoption and its influencing factors: Evidence from apple production areas in China[J]. >Journal of Integrative Agriculture, 2023, 22(1): 292-305.
No Suggested Reading articles found!