Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (7): 2031-2041    DOI: 10.1016/S2095-3119(21)63823-6
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Apple stem grooving virus is associated with leaf yellow mottle mosaic disease on Citrus grandis cv. Huangjinmiyou in China
XUAN Zhi-you1, 2, ZHANG Song1, 2, LI Ping1, 2, YANG Fang-yun1, 2, CHEN Hong-ming1, 2, LIU Ke-hong1, 2, ZHOU Yan1, 2, LI Zhong-an1, 2, ZHOU Chang-yong1, 2, CAO Meng-ji1, 2
1 National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, P.R.China
2 State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

苹果茎沟病毒 (apple stem grooving virus, ASGV) 是一种重要的潜隐类果树病毒,对柑橘、梨和苹果等多种果树的生产构成了严重的威胁。2018年,在中国南方广泛种植的黄金蜜柚 (Citrus grandis cv. Huangjinmiyou) 上观察到了严重的黄化、斑驳和花叶症状,推测其可能由病毒引起。取5株表现相关症状果树的叶片样品构建混库并送高通量测序分析,从其中鉴定到了3个ASGV变异体,通过RT-PCR和RACE技术验证了其基因组序列。序列分析显示,这3个变异体的基因组核苷酸序列一致性为81.03%–82.34%,其基因组结构与过往报道的侵染其它果树的变异体类似。基于病毒全基因组核苷酸序列和外壳蛋白氨基酸序列的系统发育分析显示,3个黄金蜜柚ASGV变异体分别与来自不同寄主和地区的ASGV变异体聚在一枝。重组分析显示,3个ASGV变异体可能来自于ASGV不同株系间的重组。在全国11个主要柑橘种植省份采集了507份黄金蜜柚样品进行RT-PCR检测发现,在每个省份表现上述相关症状的样品中,ASGV的检出率均在92.7%以上,而在40份没有症状的样品中,均未检测到ASGV。将其中6个省份的感病样品嫁接到ASGV的指示植物——Rusk枳橙上,新生的系统叶表现出典型的碎叶症状,进一步验证了黄金蜜柚中ASGV的侵染。进一步探究了病毒和症状与温度的关系,发现嫁接的感病黄金蜜柚样品在30°C–35°C条件下症状消失,同时RT-PCR也检测不到ASGV的存在。而后,再将其置于20°C–24°C的条件下一段时间后,黄金蜜柚症状恢复,且ASGV可以由RT-PCR检测到。本文揭示了黄金蜜柚黄化斑驳花叶病与ASGV侵染的相关性,并提示了该病害大面积流行的风险,为进一步的病害防控提供了相应参考




Abstract  Although it is usually latent on citrus, apple, and pear, apple stem grooving virus (ASGV) poses a great risk to many sensitive cultivars.  Since severe leaf yellow mottle mosaic (LYMM) symptoms have been observed on Huangjinmiyou (HJY) pummelos (Citrus grandis cv. Huangjinmiyou), a commercial variety that is widely cultivated in South China, high throughput sequencing (HTS) was used to find potential pathogens and only three divergent ASGV variants were identified.  The three ASGV variants shared 81.03–82.34% genome-wide pairwise identities with each other, and were separately closest to other ASGV variants from different hosts and/or geographical regions, as indicated by viral phylogenies.  However, these new variants may have developed from viral interstrain interactions, based on the results of recombination analysis.  A large-scale survey using reverse transcription-PCR (RT-PCR) protocols designed for the three ASGV variants revealed a high incidence (92.7–100%) of ASGV in symptomatic HJY trees from 11 major citrus-producing regions in China.  None of ASGV were detected in asymptomatic trees.  Temperature treatments applied to the symptomatic HJY plants showed that ASGV is sensitive to high temperatures (30–35°C), at which not only the plants recovered, but also the viruses were not detected by RT-PCR, while at low temperatures (20–24°C), both the symptoms and viruses remained detectable.  These data show that ASGV is associated with the LYMM disease prevalent on HJY in China, and this is the significant basis especially of taking appropriate measures timely to manage the disease.  
Keywords:  citrus, pummelo        apple stem grooving virus        genome sequence        thermotherapy  
Received: 07 June 2021   Accepted: 12 August 2021
Fund: This research was supported by the National Key R&D Program of China (2019YFD1001800), the National Natural Science Foundation of China (32072389), the Innovation Program for Chongqing’s Overseas Returnees (cx2019013) and 111 Project (B18044) from Ministry of Education (China). 
About author:  XUAN Zhi-you, E-mail: xuanzhiyou@email.swu.edu.cn; Corres- pondence CAO Meng-ji, E-mail: caomengji@cric.cn

Cite this article: 

XUAN Zhi-you, ZHANG Song, LI Ping, YANG Fang-yun, CHEN Hong-ming, LIU Ke-hong, ZHOU Yan, LI Zhong-an, ZHOU Chang-yong, CAO Meng-ji. 2022. Apple stem grooving virus is associated with leaf yellow mottle mosaic disease on Citrus grandis cv. Huangjinmiyou in China. Journal of Integrative Agriculture, 21(7): 2031-2041.

Bhardwaj P, Hallan V. 2019. Molecular evidence of Apple stem grooving virus infecting Ficus palmata. Trees - Structure and Function, 33, 1–9.
Chen H M, Wang X F, Zhou Y, Zhou C Y, Guo J, Li Z A. 2015. Biological characterization and RT-PCR detection of a new disease of Eureka lemon. Journal of Plant Protection, 42, 557–563. (in Chiense)
Clover G R G, Pearson M N, Elliott D R, Tang Z, Alexander B J R. 2003. Characterization of a strain of Apple stem grooving virus in Actinidia chinensis from China. Plant Pathology, 52, 371–378.
Edgar R C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.
Garnsey S M. 1974. Mechanical transmission of a virus that produces tatter leaf symptoms in Citrus excelsa. International Organization of Citrus Virologists Conference Proceedings (1957–2010), 6, 137–140.
Garnsey S M, Jones J W. 1968. Relationship of symptoms to the presence of tatter-leaf virus in several citrus hosts. International Organization of Citrus Virologists Conference Proceedings (1957–2010), 4, 206–212. 
Ghoshal B, Sanfacon H. 2014. Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology, 456–457, 188–197.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q , Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2013. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29, 644–652. 
He Z, Chen W, Chen C, Liu X, Li L. 2019. First report of apple stem grooving virus infecting lotus (Nelumbo nucifera) in China. Plant Disease, 103, 782.
Hirata H, Yamaji Y, Komatsu K, Kagiwada S, Oshima K, Okano Y, Takahashi S, Ugaki M, Namba S. 2010. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Research, 152, 1–9. 
Honjo M N, Emura N, Kawagoe T, Sugisaka J, Kamitani M, Nagano A J, Kudoh H. 2020. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. The ISME Journal, 14, 506–518.
Hu G J, Wang G P, Wang L P, Hong N. 2017. The incidence and molecular characteristics of Apple stem grooving virus from pear in China. Australasian Plant Pathology, 46, 305–311.
Inouye N, Maeda T, Mitsuhata K. 1979. Citrus tatter leaf virus isolated from lily. Japanese Journal of Phytopathology, 45, 712–720.
Komatsu K, Hirata H, Fukagawa T, Yamaji Y, Okano Y, Ishikawa K, Adachi T, Maejima K, Hashimoto M, Namba S. 2012. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Research, 167, 8–15. 
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23, 2947–2948.
Li Z, Zhang S, Zhang Z, Fan X, Ren F, Hu G, Dong Y. 2018. Analysis of the complete genome of Apple stem grooving virus isolate Jilin-shaguo. Acta Horticulturae Sinica, 45, 641–649. (in Chinese)
Liebenberg A, Moury B, Sabath N, Hell R, Kappis A, Jarausch W, Wetzel T. 2012. Molecular evolution of the genomic RNA of apple stem grooving capillovirus. Journal of Molecular Evolution, 75, 92–101.
Lin C, Chang L, Lin Y, Cheng H J, Wu M L, Hung T. 2018. Biological and molecular characterization of citrus tatter leaf virus in Taiwan. Plant Pathology, 67, 995–1008.
Liu J, Zhang X, Yang Y, Hong N, Wang G, Wang A, Wang L. 2016. Characterization of virus-derived small interfering RNAs in Apple stem grooving virus-infected in vitro-cultured Pyrus pyrifolia shoot tips in response to high temperature treatment. Virology Journal, 13, 166.
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, Wang L. 2015. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics, 16, 945.
Liu Q, Xuan Z, Wu J, Qiu Y, Cao M. 2019. Loquat is a new natural host of Apple stem grooving virus and Apple chlorotic leaf spot virus in China. Plant Disease, 103, 3290.
Magome H, Yoshikawa N, Takahashi T, Miyakawa T. 1997. Molecular variability of the genomes of Capilloviruses from apple, Japanese pear, European pear, and citrus trees. Phytopathology, 87, 389–396.
Maliogka V I, Minafra A, Saldarelli P, Ruiz-Garcia A B, Glasa M, Katis N, Olmos A. 2018. Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10, 436.
Martin D P, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, vev003.
Van der Meer F A. 1976. Observations on apple stem grooving virus. Acta Horticulturae, 67, 293–304.
Mueller E E, Grau C R. 2007. Seasonal progression, symptom development, and yield effects of Alfalfa mosaic virus epidemics on soybean in wisconsin. Plant Disease, 91, 266–272.
Obrepalska-steplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P. 2016. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. Frontiers in Plant Science, 6, 903.
Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. 1995. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: Comparative sequence analysis of capillovirus genomes. Journal of General Virology, 76, 2305–2309.
Patil B L, Fauquet C M. 2015. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Molecular Plant Pathology, 16, 484–494.
Radford A D, Chapman D A, Dixon L K, Chantrey J, Darby A C, Hall N. 2012. Application of next-generation sequencing technologies in virology. Journal of General Virology, 93, 1853–1868.
Shim H, Min Y J, Hong S, Kwon M, Kim D, Kim H, Choi Y, Lee S, Yang J. 2004. Nucleotide sequences of a korean isolate of apple stem grooving virus associated with black necrotic leaf spot disease on pear (Pyrus pyrifolia). Molecules and Cells, 18, 192–199.
Takahashi T, Saito N, Goto M, Kawai A, Namba S, Yamashita S. 1990. Apple stem grooving virus isolated from Japanese apricot (Prunus mume) imported from China. Research Bulletin of the Plant Protection Service, 26, 15–21.
Tan F C, Swain S M. 2007. Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiologia Plantarum, 131, 481–495.
Tan S H, Osman F, Bodaghi S, Dang T, Greer G, Huang A, Hammado S, Abu-Hajar S, Campos R, Vidalakis G. 2019. Full genome characterization of 12 citrus tatter leaf virus isolates for the development of a detection assay. PLoS ONE, 14, e0223958.
Tang J, Olson J D, Ochoa-Corona F M, Clover G R G. 2010. Nandina domestica, a new host of apple stem grooving virus and Alternanthera mosaic virus. Australasian Plant Disease Notes, 5, 25–27.
Tatineni S, Afunian M R, Hilf M. E, Gowda S, Dawson W O, Garnsey S M. 2009. Molecular characterization of Citrus tatter leaf virus historically associated with meyer lemon trees: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology, 99, 423–431.
Villamor D E, Ho T, Rwahnih M A, Martin R R, Tzanetakis I E. 2019. High throughput sequencing for plant virus detection and discovery. Phytopathology, 109, 716–725. 
Wu G A, Prochnik S, Jenkin, J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita M A, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Del Fabbro C, Pinosio S, Zuccolo A, Chapman J,  et al. 2014. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 32, 656–662.
Xu Q, Chen L L, Ruan X A, Chen D J, Zhu A D, Chen C L, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J J, Gao S, Xing F, Lan H, Chang J W, Ge X H, Lei Y, Hu Q, Miao Y, Wang L,  et al. 2013. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 45, 59–66.
Yanase H. 1983. Back-transmission of Apple stem grooving virus to apple seedlings and induction of symptoms of apple top working disease in Mitsuba Kaido (Malus sieboldii) and Kobano Zumi (Malus sieboldii var. Arborescens) rootstocks. Acta Horticulturae, 130, 117–122.
Yoshikawa N, Sasaki E, Kato M, Takahashi T. 1992. The nucleotide sequence of apple stem grooving capillovirus genome. Virology, 191, 98–105.
Yu H, Yang X, Guo F, Jiang X L, Deng X X, Xu Q. 2017. Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China. Tree Genetics & Genomes, 13, 58.
Zhong S, Liu J, Jin H, Lin L, Li Q, Chen Y, Yuan Y, Wang Z, Huang H, Qi Y, Chen X, Vaucheret H, Chory J, Li J, He Z. 2013. Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 110, 9171–9176.
Zhou C Y. 2020. The status of citrus Huanglongbing in China. Tropical Plant Pathology, 45, 279–284.
Zhou C Y, Da Graça J V, Freitas-Astúa J, Vidalakis G, Duran-Vila N, Lavagi I. 2020. Citrus viruses and viroids. In: Talon M, Caruso M, Gmitter Jr F, eds., The Genus Citrus. Elsevier Science, Duxford, UK. pp. 391–410.
Zhou Y, Wang X F, Tang K Z, Zhou C Y. 2004. Study on cp/Hinf I rflp groups of citrus tristeza virus in Chongqing. Journal of Southwest Agricultural University (Natural Science), 26, 420–422. (in Chinese)


[1] HU Guo-jun, DONG Ya-feng, ZHANG Zun-ping, FAN Xu-dong, REN Fan. Elimination of grapevine fleck virus and grapevine rupestris stem pitting-associated virus from Vitis vinifera 87-1 by ribavirin combined with thermotherapy[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2463-2470.
[2] HUO Dong-ao, ZHU Bin, TIAN Gui-fu, DU Xu-ye, GUO Juan, CAI Meng-xian. Assignment of unanchored scaffolds in genome of Brassica napus by RNA-seq analysis in a complete set of Brassica rapa-Brassica oleracea monosomic addition lines[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1541-1546.
[3] HU Qian-qian, LIU Xue-jian, HAN Xue-dong, LIU Yong, JIANG Jun-xi, XIE Yan . First detection and complete genome of Soybean chlorotic mottle virus naturally infecting soybean in China by deep sequencing[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2664-2667.
[4] MENG Di, ZHAI Li-xin, TIAN Qiao-peng, GUAN Zheng-bing, CAI Yu-jie, LIAO Xiang-ru. Complete genome sequence of Bacillus amyloliquefaciens YP6, a plant growth rhizobacterium efficiently degrading a wide range of organophosphorus pesticides[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2668-2672.
[5] HU Guo-jun, DONG Ya-feng, ZHANG Zun-ping, FAN Xu-dong, REN Fang, LI Zheng-nan. Effect of pre-culture on virus elimination from in vitro apple by thermotherapy coupled with shoot tip culture[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2015-2023.
[6] LI Ping, LI Min, ZHANG Song, WANG Jun, YANG Fang-yun, CAO Meng-ji, LI Zhong-an. Complete genome sequences of four isolates of Citrus leaf blotch virus from citrus in China[J]. >Journal of Integrative Agriculture, 2018, 17(03): 712-715.
[7] GAO Rui, LI Shi-fang, LU Mei-guang. Complete nucleotide sequences of two isolates of Cherry virus A from sweet cherry in China[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1667-1671.
No Suggested Reading articles found!