Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (12): 2669-2677    DOI: 10.1016/S2095-3119(13)60730-3
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Phylogenetic Analysis of Citrus tristeza virus Isolates of Wild Type Citrus in China
 YI  Long, ZHOU  Chang-yong
1、Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing 400712, P.R.China
2、National Navel Orange Engineering Technology Research Center, Ganzhou 341000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The genetic variation and phylogenetic relationships of Citrus tristeza virus (CTV) isolates collected from Chinese wild type citrus were analyzed by comparing the sequences of nine genomic regions (p23, p20, p13, p18, p25, p27, POL, HEL and k17) with the CTV isolates of cultivated citrus from different countries. The results showed that the divergence pattern of genomic RNA of the CTV isolates from wild type citrus was similar to that of other isolates from cultivated citrus, the 3´ proximal region was relatively conserved, and the 5´ proximal region had greater variability. The nine genomic regions of CTV isolates analyzed were found to have been under purifying selection in the evolution process. Phylogenetic analysis showed that the eleven Chinese wild CTV isolates were located at different clades and did not reflect their geographical origins, suggesting genetic diversity among the Chinese wild CTV populations. These results will aid in the understanding of molecular evolution of the Chinese CTV populations.

Abstract  The genetic variation and phylogenetic relationships of Citrus tristeza virus (CTV) isolates collected from Chinese wild type citrus were analyzed by comparing the sequences of nine genomic regions (p23, p20, p13, p18, p25, p27, POL, HEL and k17) with the CTV isolates of cultivated citrus from different countries. The results showed that the divergence pattern of genomic RNA of the CTV isolates from wild type citrus was similar to that of other isolates from cultivated citrus, the 3´ proximal region was relatively conserved, and the 5´ proximal region had greater variability. The nine genomic regions of CTV isolates analyzed were found to have been under purifying selection in the evolution process. Phylogenetic analysis showed that the eleven Chinese wild CTV isolates were located at different clades and did not reflect their geographical origins, suggesting genetic diversity among the Chinese wild CTV populations. These results will aid in the understanding of molecular evolution of the Chinese CTV populations.
Keywords:  Citrus tristeza virus       wild type citrus       genetic diversity       phylogenetic analysis  
Received: 22 October 2013   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (30900977), the Program for Changjiang Scholars and Innovative Research Team in Universities, China (PCSIRT, IRT0976), the Key Project 210111 of Ministry of Education of China, and the Young Scientist Cultivation Program of Jiangxi, China (2010DQ02300).

Corresponding Authors:  ZHOU Chang-yong, Tel: +86-23-68349037, Fax: +86-23-68349592, E-mail: zhoucy@ cric.cn     E-mail:  zhoucy@cric.cn
About author:  YI Long, Tel: +86-797-8393068, E-mail: yilong@gnnu.edu.cn

Cite this article: 

YI Long, ZHOU Chang-yong. 2014. Phylogenetic Analysis of Citrus tristeza virus Isolates of Wild Type Citrus in China. Journal of Integrative Agriculture, 13(12): 2669-2677.

Albiach-Martí M R, Guerri J, de Hermoso Mendoza A, LaigretF, Ballester-Olmos J F, Moreno P. 2000. Aphid transmissionalters the genomic and defective RNA populations ofCitrus tristeza virus isolates. Phytopathology, 90, 134-138

Albiach-Martí M R, Mawassi M, Gowda S, Satyanarayana T,Hilf M E, Shanker S, Almira E C, Vives M C, López C,Guerri J, Flores R, Moreno P, Garnsey S M, Dawson W O.2000. Sequences of Citrus tristeza virus separated in timeand space are essentially identical. Journal of Virology,74, 6856-6865

Ayllón M A, López C, Navas-Castillo J, Garnsey S M, Guerri J,Flores R, Moreno P. 2001. Polymorphism of the 5´ terminalregion of Citrus tristeza virus (CTV) RNA: Incidence ofthree sequence types in isolates of different origin andpathogenicity. Archives of Virology, 146, 27-40

Bar-Joseph M, Marcus R, Lee R F. 1989. The continuouschallenge of Citrus tristeza virus control. Annual Reviewof Phytopathology, 27, 291-316

Bernardi G. 1995. The human genome: Organization andevolutionary history. Annual Review of Genetics, 29,445-476

Castresana J. 2002. Genes on human chromosome 19 showextreme divergence from the mouse orthologs and a highGC content. Nucleic Acids Research, 30, 1751-1756

Fagoaga C, López C, Moreno P, Navarro L, Flores R, PeñaL. 2005. Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus arecitrus specific and do not correlate with the pathogenicityof the virus strain. Molecular Plant-Microbe Interactions,18, 435-445

Febres V J, Ashoulin L, Mawasi M, Frank A, Bar-JosephM, Manjunath K L, Lee R F, Niblett C L. 1996. Thep27 protein is present at one end of Citrus tristeza virusparticles. Phytopathology, 86, 1331-1335

Fullerton S M, Carvalho A B, Clark A G. 2001. Local rates ofrecombination are positively correlated with GC contentin the human genome. Molecular Biology and Evolution,18, 1139-1142

Ghorbel R, López C, Fagoaga C, Moreno P, Navarro L, FloresR, Peña L. 2001. Transgenic citrus plants expressingthe Citrus tristeza virus p23 protein exhibit viral-likesymptoms. Molecular Plant Pathology, 2, 27-36

Gowda S, Satyanarayana T, Davis C L, Navas-Castillo J,Albiach-Martí M R, Mawassi M, Valkov N, Bar-JosephM, Moreno P, Dawson W O. 2000. The p20 gene productof Citrus tristeza virus accumulates in the amorphousinclusion bodies. Virology, 274, 246-254

Hall T A. 1999. BioEdit: a user-friendly biological sequencealignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98

Hardison R C, Roskin K M, Yang S, Diekhans M, Kent WJ, Weber R, Elnitski L, Li J, O’Connor M, Kolbe D,Schwartz S, Furey T S, Whelan S, Goldman N, Smit A,Miller W, Chiaromonte F, Haussler D. 2003. Co-variationin frequencies of substitution, deletion, transpositionand recombination during eutherian evolution. GenomeResarch, 13, 13-26

Hilf M E, Karasev A V, Albiach-Marti M R, Dawson W O,Garnsey S M. 1999. Two paths of sequence divergencein the Citrus tristeza virus complex. Phytopathology, 89,336-342

Hilf M E, Karasev A V, Pappu H R, Gumpf D J, Niblett CL, Garnsey S M. 1995. Characterization of Citrus tristezavirus subgenomic RNAs in infected tissue. Virology, 208,576-582

Hilf M E, Mavrodieva V A, Garnsey S M. 2005. Geneticmarker analysis of a global collection of isolates ofcitrus tristeza virus: Characterization and distributionof CTV genotypes and association with symptoms.Phytopathology, 95, 909-917

Karasev A V, Boyko V P, Gowda S, Nikolaeva O, Hilf M E,Koonin E V, Niblett C L, Cline K, Gumpf D J, Lee R F,Lewandowski D J, Dawson W O. 1995. Complete sequenceof the Citrus tristeza virus RNA genome. Virology, 208,511-520

Kumar S, Nei M, Dudley J, Tamura K. 2008. MEGA: Abiologist-centric software for evolutionary analysis ofDNA and protein sequences. Briefings in Bioinformatics,9, 299-306

López C, Ayllón M A, Navas-Castillo J, Guerri J, MorenoP, Flores R. 1998. Molecular variability of the 5´- and3´-terminal regions of Citrus tristeza virus RNA.Phytopathology, 88, 685-691

López C, Navas-Castillo J, Gowda S, Moreno P, Flores R.2000. The 23-kDa protein coded by the 3´-terminal gene ofCitrus tristeza virus is an RNA-binding protein. Virology,269, 462-470

Lu R, Folimonov A, Shintaku M, Li W X, Falk B W, DawsonW O, Ding S W. 2004. Three distinct suppressors ofRNA silencing encoded by a 20-kb viral RNA genome.Proceedings of the National Academy of Sciences of theUnited States of America, 101, 15742-15747

Martín S, Sambade A, Rubio L, Vives M C, Moya P, Guerri J,Elena S F, Moreno P. 2009. Contribution of recombinationand selection to molecular evolution of Citrus tristezavirus. Journal of General Virology, 90, 1527-1538

Mawassi M, Mietkiewska E, Gofman R, Yang G, Bar-JosephM. 1996. Unusual sequence relationships between twoisolates of Citrus tristeza virus. Journal of GeneralVirology, 77, 2359-2364

Melzer M J, Borth W B, Sether D M, Ferreira S, GonsalvesD, Hu J S. 2010. Genetic diversity and evidence forrecent modular recombination in Hawaiian Citrustristeza virus. Virus Genes, 40, 111-118

Roy A, Brlansky R H. 2010. Genome analysis of an orangestem pitting Citrus tristeza virus isolate reveals a novelrecombinant genotype. Virus Research, 151, 118-130

Rubio L, Ayllón M A, Kong P, Fernández A, Polek M,Guerri J, Moreno P, Falk B W. 2001. Genetic variation ofCitrus tristeza virus isolates from California and Spain:evidence for mixed infections and recombination. Journalof Virology, 75, 8054-8062

Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S. 2006. Thecomplete nucleotide sequence of a severe stem pittingisolate of Citrus tristeza virus from Spain: Comparisonwith isolates from different origins. Archives of Virology,151, 387-398

Ruiz-Ruiz S, Navarro B, Gisel A, Peña L, Navarro L, MorenoP, Serio F D, Flores R. 2011. Citrus tristeza virus infectioninduces the accumulation of viral small RNAs (21-24-nt)mapping preferentially at the 3´-terminal region of thegenomic RNA and affects the host small RNA profile Plant Molecular Biology, 75, 607-619

Satyanarayana T, Gowda S, Ayllón M A, Albiach-Martí M R,Rabindran S, Dawson W O. 2002. The p23 protein of Citrustristeza virus controls asymmetrical RNA accumulation.Journal of Virology, 76, 473-483

Satyanarayana T, Gowda S, Mawassi M, Albiach-Martí M R,Ayllón M A, Robertson C, Garnsey S M, Dawson W O.2000. Closterovirus encoded HSP70 homolog and p61 inaddition to both coat proteins function in efficient virionassembly. Virology, 278, 253-265

Sentandreu V, Castro J A, Ayllon M A, Rubio L, GuerriJ, Gonzalez-Candelas F, Moreno P, Moya A. 2006.Evolutionary analysis of genetic variation observed inCitrus tristeza virus (CTV) after host passage. Archivesof Virology, 151, 875-894

Suastika C, Natsuake T, Hirotsugu T, Kano T, Ieki H, Okuda S. 2001. Nucleotide sequence of Citrus tristeza virus seedlingyellows isolate. Journal of General Plant Pahtology, 67,73-77

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4:Molecular evolutionary genetics analysis (MEGA)software version 4.0. Molecular Biology and Evolution,24, 1596-1599

Tatineni S, Robertson C J, Garnsey S M, Bar-Joseph M, GowdaS, Dawson W O. 2008. Three genes of Citrus tristeza virusare dispensable for infection and movement throughoutsome varieties of citrus trees. Virology, 376, 297-307

Thompson J D, Higgins D G, Gibson T J. 1994. CLUSTAL W:Improving the sensitivity of progressive multiple sequencealignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucleic AcidsResearch, 22, 4673-4680

Vives M C, Rubio L, López C, Navas-Castillo J, Albiach-MartíM R, Dawson W O, Guerri J, Flores R, Moreno P. 1999.The complete genome sequence of the major componentof a mild Citrus tristeza virus isolate. Journal of GeneralVirology, 80, 811-816

Yang Z N, Mathews D M, Dodds J A, Mirkov T E. 1999.Molecular characterization of an isolate of Citrus tristezavirus that causes severe symptoms in sweet orange. VirusGenes, 19, 131-142

Yi L, Zhou C Y, Zhou Y, L i Z A. 2010. Genetic evolutionanalysis on wild isolates of Citrus tristeza virus originatedin China based on coat protein genes sequences.Agricultural Sciences in China, 11, 1623-1629

Yi L, Zhou C Y, Zhou Y, Wang Z G, Tang K Z. 2007.Molecular characterization of Citrus tristeza virus isolatesin Chinese wild type citrus. Scientia Agricultura Sinica,40, 932-939. (in Chinese)
[1] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[2] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[3] Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV. Molecular epidemiological study of animal rabies in Kazakhstan[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1266-1275.
[4] WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong. Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates[J]. >Journal of Integrative Agriculture, 2023, 22(3): 872-880.
[5] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[6] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[7] XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long. Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1539-1550.
[8] HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1414-1423.
[9] WANG Fu-qiang, FAN Xiu-cai, ZHANG Ying, SUN Lei, LIU Chong-huai, JIANG Jian-fu. Establishment and application of an SNP molecular identification system for grape cultivars[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1044-1057.
[10] ZHANG Yu, YANG Bin, YU Jie, PANG Bao-ping, WANG Gui-rong. Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2022, 21(2): 474-485.
[11] MA Xuan-yan, JIAO Wei-qi, LI Heng, ZHANG Wei, REN Wei-chao, WU Yan, ZHANG Zhi-chang, LI Bao-hua, ZHOU Shan-yue. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3684-3691.
[12] XIAO Qian-lin, LI Zhen, WANG Ya-yun, HOU Xian-bin, WEI Xi-mei, ZHAO Xiao, HUANG Lei, GUO Yan-jun, LIU Zhi-zhai. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.) [J]. >Journal of Integrative Agriculture, 2022, 21(10): 2848-2864.
[13] LIU Na, CHENG Fang-yun, GUO Xin, ZHONG Yuan. Development and application of microsatellite markers within transcription factors in flare tree peony (Paeonia rockii) based on next-generation and single-molecule long-read RNA-seq[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1832-1848.
[14] GAO Yuan, WANG Da-jiang, WANG Kun, CONG Pei-hua, LI Lian-wen, PIAO Ji-cheng. Analysis of genetic diversity and structure across a wide range of germplasm reveals genetic relationships among seventeen species of Malus Mill. native to China [J]. >Journal of Integrative Agriculture, 2021, 20(12): 3186-3198.
[15] FAN Xu-dong, ZHANG meng-yan, ZHANG Zun-ping, REN Fang, HU Guo-jun, DONG Ya-feng. Prevalence and genetic diversity of grapevine fabavirus isolates from different grapevine cultivars and regions in China[J]. >Journal of Integrative Agriculture, 2020, 19(3): 768-774.
No Suggested Reading articles found!