Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (3): 872-880    DOI: 10.1016/j.jia.2022.08.110
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates

WANG Deng-feng1, 2, YANG Xue-yun2, WEI Yu-rong2, LI Jian-jun2, BOLATI Hongduzi2, MENG Xiao-xiao2, TUERXUN Gunuer2, NUERDAN Nuerbaiheti2, WU Jian-yong2#

1 Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China

2 Xinjiang Key Laboratory of Animal Infectious Diseases, Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830013, P.R.China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  【目的】山羊关节炎-脑炎病毒(Caprine arthritis-encephalitis virusCAEV)属于反转录病毒科慢病毒属成员,与梅迪-维斯纳病毒(Maedi visna virus)合称为小反刍动物慢病毒(Small ruminant lentiviruses)。该病毒可感染山羊和绵羊,以奶山羊最为易感。在过去四十年间,CAEV在我国传播扩散,并存在不同程度的感染,但有关该病毒基因组特征和可能的源研究仍然较少,获取在中国流行的CAEV毒株的基因组数据对于开发诊断方法和根除相关疾病具有重要意义。【方法】本研究使用分段扩增和测序的方法获得了1989–1994年间从我国甘肃、贵州、陕西、山东和四川等地感染奶山羊分离的5CAEV病毒基因组,通过基因型分析、全基因组比对、遗传进化和种群结构分析来阐释该病毒基因组特征。【结果】我国CAEV与国外毒株基因组相似度为58%–93%,属于B型小反刍动物慢病毒,可进一步B1基因型。遗传进化分析结果显示本研究测定的5株病毒与其它两株中国毒株聚集成簇,亲缘关系最近,同源性98.3%–99.3%;其次是与美国毒株ClementsGenBank登录号NC_001463.1),相似性为91.8%–92.3%;种群结构分析表明我国已测定的7株病毒拥有与其它已知毒株不同的祖先成分。【结论】跨度5年从国不同省份分离的CAEV毒株具有高度同源性,分离株可能起源于非已知毒株的其它来源。【创新点】本研究完成了我国最早分离的5CAEV病毒基因组测序和基因特征分析确认我国分离毒株高度同源,可能起源于特定的同一祖先,该结果为研制适用于我国CAEV检测的试剂CAEV流行病学调查与防控奠定了基础




Abstract  

Caprine arthritis-encephalitis virus (CAEV) is an under-studied virus infecting caprines and ovines worldwide.  Over the last four decades, CAEV has spread in China, obtaining genomic data on CAEV strains circulating in China is of importance for developing diagnostic methods and eradicating associated diseases.  However, there is limited information on the genome, including characterizations, and the probable origin.  This work aimed to characterize Chinese CAEV genomes and population structures.  Five CAEV strains isolated from infected dairy goats between 1989 and 1994 in Gansu, Guizhou, Shaanxi, Shandong and Sichuan provinces were cloned and sequenced.  The Chinese CAEV had a 58–93% genome similarities to strains outside of China, and they belonged to subgenotype B1.  The highest similarity levels (98.3–99.3%) were with two other Chinese strains, and they shared a 91.8–92.3% similarity with the strain Clements (GenBank accession no. NC_001463.1) from outside of China.  The Chinese CAEV strains isolated from different provinces over five years were still highly homologous and contained unique ancestral population components, indicating that these Chinese strains had a common origin that differed from other known strains.  Our results provide genomic data on circulating Chinese CAEV strains and will be useful for future epidemiological investigations and CAEV eradication programs.

Keywords:  Caprine arthritis-encephalitis virus        genotype       phylogenetic analysis       population structure       similarity       dairy goat  
Received: 07 December 2021   Accepted: 22 May 2022
Fund: 

This work was funded by the National Key Research and Development Program of China (2016YFD0500908).  

About author:  WANG Deng-feng, E-mail: wangdengfeng713@163.com; #Correspondence WU Jian-yong, Tel: +86-991-3091202, Fax: +86-991-3098109, E-mail: chienyung@foxmail.com

Cite this article: 

WANG Deng-feng, YANG Xue-yun, WEI Yu-rong, LI Jian-jun, BOLATI Hongduzi, MENG Xiao-xiao, TUERXUN Gunuer, NUERDAN Nuerbaiheti, WU Jian-yong. 2023. Genome characterization of the Caprine arthritis-encephalitis virus in China: A retrospective genomic analysis of the earliest Chinese isolates. Journal of Integrative Agriculture, 22(3): 872-880.

Baihuojia H, Lin J, Hu Z, Li J, Xie X, Huang M, Zhang G. 1989. Isolation and identification of Caprine arthritis-encephalitis virus. Chinese Veterinary Science, 19, 3–4. (in Chinese)
Barták P, Šimek B, Václavek P, Čurn V, Plodková H, Tonka T, Farková B, Vernerová K, Vejčík A. 2018. Genetic characterisation of small ruminant lentiviruses in sheep and goats from the Czech Republic. Acta Veterinaria Brno, 87, 19–26.
Crawford T, Adams D, Cheevers W, Cork L. 1980. Chronic arthritis in goats caused by a retrovirus. Science, 207, 997–999.
Earl D A, Vonholdt B M. 2012. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.
Erhouma E, Guiguen F, Chebloune Y, Gauthier D, Lakhal L M, Greenland T, Mornex J F, Leroux C, Alogninouwa T. 2008. Small ruminant lentivirus proviral sequences from wild ibexes in contact with domestic goats. Journal of General Virology, 89, 1478–1484.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.
Falush D, Stephens M, Pritchard J K. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.
Gjerset B, Rimstad E, Teige J, Soetaert K, Jonassen C M. 2009. Impact of natural sheep–goat transmission on detection and control of small ruminant lentivirus group C infections. Veterinary Microbiology, 135, 231–238.
Gomez-Lucia E, Barquero N, Domenech A. 2018. Maedi-Visna virus: Current perspectives. Veterinary Medicine: Research and Reports, 9, 11–21.
Gong C, Lin J, Wang Z, Li J, Ma W, Fan Y, Wu F. 1996. Investigation of Caprine arthritis-encephalitis in China. Chinese Journal of Preventive Veterinary Medicine, 3, 49. (in Chinese)
Gumusova S O, Memis Y S. 2016. Caprine arthritis-encephalitis and bluetongue virus infections in maltese, saanen and hair goat breeds. Pakistan Journal of Zoology, 48, 1567–1568.
Highland M A. 2017. Small ruminant lentiviruses: Strain variation, viral tropism, and host genetics influence pathogenesis. Veterinary Pathology, 54, 353–354.
Hu Z, Baihuojia H, Lin J, Li J, Gong C, Qi C. 1989. Isolation and identification of Caprine arthritis-encephalitis virus. Chinese Journal of Veterinary Medicine, 15, 9–10. (in Chinese)
Janes J K, Miller J M, Dupuis J R, Malenfant R M, Gorrell J C, Cullingham C I, Andrew R L. 2017. The K=2 conundrum. Molecular Ecology, 26, 3594–3602.
Kaba J, Strzałkowska N, Jóźwik A, Krzyżewski J, Bagnicka E. 2012. Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. Journal of Dairy Science, 95, 1617–1622.
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066. 
Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
Kurhaluk, Tkachenko H, Czopowicz M, Sikora J, Urbanska D M, Kawecka A, Kaba J, Bagnicka E. 2021. A comparison of oxidative stress biomarkers in the serum of healthy polish dairy goats with those naturally infected with small ruminant lentivirus in the course of lactation. Animals, 11, 1945.
Li J, Lin J, Baihuojia H, Baihuojia H, Ying J, Han D, Liu J, Chen J, Lin L. 1990. Isolation and identification of Caprine arthritis-encephalitis virus in Sichuan, China. China Animal Health Inspection, (05), 1–3. (in Chinese)
Li Y L, Liu J X. 2018. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18, 176–177.
Lin J, Hu Z, Baihuojia H, Li J, Fan C, Zhou Y. 1990. Isolation and identification of Caprine arthritis-encephalitis virus in Guizhou, China. Xinjiang Agricultural Sciences, (04), 179–180. (in Chinese)
Michiels R, Adjadj N R, Regge N D. 2020. Phylogenetic analysis of belgian small ruminant lentiviruses supports cross species virus transmission and identifies new subtype B5 strains. Pathogens, 9, 183.
Michiels R, Mael E V, Quinet C, Adjadj N R, Cay A B, Regge N D. 2018. Comparative analysis of different serological and molecular tests for the detection of small ruminant lentiviruses (SRLVs) in Belgian sheep and goats. Viruses, 10, 696.
Molaee V, Bazzucchi M, Mia G M D, Otarod V, Abdollahi D, Rosati S, Luehken G. 2020. Phylogenetic analysis of small ruminant lentiviruses in Germany and Iran suggests their expansion with domestic sheep. Scientific Reports, 10, 2243. 
Muhire B M, Varsani A, Martin D P. 2014. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE, 9, e108277.
Olech M, Osinski Z, Kuzmak J. 2020. Seroprevalence of small ruminant lentivirus (SRLV) infection in wild cervids in Poland. Preventive Veterinary Medicine, 176, 104905.
Oskarsson T, Hreggvidsdottir H S, Agnarsdottir G, Matthiasdottir S, Ogmundsdottir M H, Jonsson S R, Georgsson G, Ingvarsson S, Andresson O S, Andresdottir V. 2007. Duplicated sequence motif in the long terminal repeat of Maedi-visna virus extends cell tropism and is associated with neurovirulence. Journal of Virology, 81, 4052–4057.
Picotto L D, Fuentealba N A, Bertoni G, Patrucco M, Sguazza G H, Echeverria M G, Panei C J. 2021. Argentinian small ruminant lentivirus (SRLV) p55gag antigen fused to maltose binding protein to use in SRLV serological confirmatory diagnosis. Virus Research, 296, 198332.
Pinczowski P, Sanjosé L, Gimeno M, Crespo H, Luján L. 2017. Small ruminant lentiviruses in sheep: Pathology and tropism of 2 strains using the bone marrow route. Veterinary Pathology, 54, 413–424.
Reina R, Bertolotti L, Giudici S D, Puggioni G, Ponti N, Profiti M, Patta C, Rosati S. 2010. Small ruminant lentivirus genotype E is widespread in Sarda goat. Veterinary Microbiology, 144, 24–31.
Shah C, BöNi J, Huder J B, Vogt H R, Mühlherr J, Zanoni R, Miserez R, Lutz H, Schüpbach J. 2004. Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: Evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology, 319, 12–26.
Sun Y, Yang L, Wang C, Dong H, Yang T, Zhang C, Song X. 2018. Serological investigation of Caprine arthritis-encephalitis and ovine progressive pneumoniina in 11 provinces of China. Chinese Veterinary Science, 48, 34–38. (in Chinese).
Villet S, Bouzar B A, Morin T, Verdier G, Legras C, Chebloune Y. 2003. Maedi-visna virus and Caprine arthritis-encephalitis virus genomes encode a Vpr-like but no Tat protein. Journal of Virology, 77, 9632–9638.
Wang Z, Gong C, Li J, Wu F, Liang W, Ma J. 1994. Isolation and identification of Caprine arthritis-encephalitis virus in Shandong, China. Grass-Feeding Livestock, (04), 43–44. (in Chinese)

[1] Gulzhan N. YESSEMBEKOVA, XIAO Shuang, Assem ABENOV, Talgat KARIBAEV, Alexandr SHEVTSOV, Amirgazin ASYLULAN, Yersyn Y. MUKHANBETKALIYEV, SHUAI Lei, BU Zhi-gao, Sarsenbay K. ABDRAKHMANOV. Molecular epidemiological study of animal rabies in Kazakhstan[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1266-1275.
[2] GUO Yi, GONG Ying, HE Yong-meng, YANG Bai-gao, ZHANG Wei-yi, CHEN Bo-er, HUANG Yong-fu, ZHAO Yong-ju, ZHANG Dan-ping, MA Yue-hui, CHU Ming-xing, E Guang-xin. Investigation of Mitochondrial DNA genetic diversity and phylogeny of goats worldwide[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1830-1837.
[3] HUANG Tian-yu, ZHANG Rui-bin, YANG Lu-lu, CAO Song, Frederic FRANCIS, WANG Bing, WANG Gui-rong. Identification and functional characterization of ApisOr23 in pea aphid Acyrthosiphon pisum[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1414-1423.
[4] ZHANG Yu, YANG Bin, YU Jie, PANG Bao-ping, WANG Gui-rong. Expression profiles and functional prediction of ionotropic receptors in Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2022, 21(2): 474-485.
[5] MA Xuan-yan, JIAO Wei-qi, LI Heng, ZHANG Wei, REN Wei-chao, WU Yan, ZHANG Zhi-chang, LI Bao-hua, ZHOU Shan-yue. Neopestalotiopsis eucalypti, a causal agent of grapevine shoot rot in cutting nurseries in China[J]. >Journal of Integrative Agriculture, 2022, 21(12): 3684-3691.
[6] XIAO Qian-lin, LI Zhen, WANG Ya-yun, HOU Xian-bin, WEI Xi-mei, ZHAO Xiao, HUANG Lei, GUO Yan-jun, LIU Zhi-zhai. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.) [J]. >Journal of Integrative Agriculture, 2022, 21(10): 2848-2864.
[7] DU Qing-guo, YANG Juan, Shah SYED MUHAMMAD SADIQ, YANG Rong-xin, YU Jing-juan, LI Wen-xue. Comparative transcriptome analysis of different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2043-2055.
[8] LIU Xiao-rui, ZHANG Lei, CUI Jiu-zeng, YANG Li-chun, HAN Jin-cheng, CHE Si-cheng, CAO Bin-yun, LI Guang, SONG Yu-xuan. circRNA landscape of non-pregnant endometrium during the estrus cycle in dairy goats[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1346-1358.
[9] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[10] WANG Yu-long, FAN Lin-jin, JIANG Nan, GAO Li, LI Kai, GAO Yu-long, LIU Chang-jun, CUI Hong-yu, PAN Qing, ZHANG Yan-ping, WANG Xiao-mei, QI Xiao-le. An improved scheme for infectious bursal disease virus genotype classification based on both genome-segments A and B[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1372-1381.
[11] ZHANG Jia-lei, GENG Yun, GUO Feng, LI Xin-guo, WAN Shu-bo. Research progress on the mechanism of improving peanut yield by single-seed precision sowing[J]. >Journal of Integrative Agriculture, 2020, 19(8): 1919-1927.
[12] LIU Kai, CHEN Zhan, SU Qin, YUE Lei, CHEN Wei-wen, ZHANG Wen-qing. Comparative analysis of the ecological fitness and transcriptome between two genotypes of the brown planthopper Nilaparvata lugens[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1501-1511.
[13] KANG Liang, LIANG Qiong-yue, JIANG Qiang, YAO Yi-hua, DONG Meng-meng, HE Bing, GU Ming-hua. Screening of diverse cassava genotypes based on nitrogen uptake efficiency and yield[J]. >Journal of Integrative Agriculture, 2020, 19(4): 965-974.
[14] FAN Xu-dong, ZHANG meng-yan, ZHANG Zun-ping, REN Fang, HU Guo-jun, DONG Ya-feng. Prevalence and genetic diversity of grapevine fabavirus isolates from different grapevine cultivars and regions in China[J]. >Journal of Integrative Agriculture, 2020, 19(3): 768-774.
[15] CHANG Jia-ying, LIU Shu-sen, SHI Jie, GUO Ning, ZHANG Hai-jian, CHEN Jie .
A new Curvularia lunata variety discovered in Huanghuaihai Region in China
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 551-560.
No Suggested Reading articles found!