Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (8): 1423-1430    DOI: 10.1016/S2095-3119(13)60554-7
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
QTL Identification of the Insensitive Response to Photoperiod and Temperature in Soybean by Association Mapping
 ZUO Qiao-mei, WEN Zi-xiang, ZHANG Shu-yun, HOU Jin-feng, GAI Jun-yi, YU De-yue , XING Han
Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture/National Key Laboratory of Crop Genetics and Germplasm Enhancement/ , Nanjing Agricultural University, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P<0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Satt150 (LG M) and Satt440 (LG I), were identified in both 2006 and 2007. Twelve SSR markers (P<0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.

Abstract  The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P<0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Satt150 (LG M) and Satt440 (LG I), were identified in both 2006 and 2007. Twelve SSR markers (P<0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.
Keywords:  QTL       association mapping       soybean       insensitive response       photoperiod and temperature  
Received: 17 September 2012   Accepted:
Fund: 

The project was supported by the National Basic Research Program of China (2009CB118400) and the Earmarked Fund for Modern Agro-Industry Technology Research System, China (nycytx-004).

Corresponding Authors:  Correspondence XING Han, Tel/Fax: +86-25-84399526, E-mail: hanx@njau.edu.cn      E-mail:  hanx@njau.edu.cn

Cite this article: 

ZUO Qiao-mei, WEN Zi-xiang, ZHANG Shu-yun, HOU Jin-feng, GAI Jun-yi, YU De-yue , XING Han. 2013. QTL Identification of the Insensitive Response to Photoperiod and Temperature in Soybean by Association Mapping. Journal of Integrative Agriculture, 12(8): 1423-1430.

[1]Bernard R L. 1971. Two major genes for time of floweringand maturity in soybeans. Crop Science, 11, 242-244

[2]Bonato E R, Vello N A. 1999. E6, a dominant geneconditioning early flowering and maturity in soybeans.Genetics and Molecular Biology, 22, 229-232

[3]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M,Ramdoss Y, Buckler E S. 2007. TASSEL: software forassociation mapping of complex traits in diversesamples. Bioinformatics, 23, 2633-2635

[4]Breseghello F, Sorrells M E. 2006. Association mapping ofkernel size and milling quality in wheat (Triticumaestivum L.) cultivars. Genetics, 172, 1165-1177

[5]Buzzell R. 1971. Inheritance of a soybean flowering responseto fluorescent-daylength conditions. Canadian Journalof Genetics and Cytology, 13, 703-707

[6]Buzzell R I, Voldeng H D. 1980. Inheritance of insensitivityto long daylength. Soybean Genetics Newsletter, 7,26-29

[7]Cober E, Tanner J, Voldeng H. 1996. Soybean photoperiodsensitivityloci respond differentially to light quality.Crop Science, 36, 606-610

[8]Cober E R, Charette M, Voldeng H D, Molnar S J. 2010. Anew locus for early maturity in soybean. Crop Science,50, 524-527

[9]Cober E R, Voldeng H D. 2001. A new soybean maturity andphotoperiod-sensitivity locus linked to E1 and T. CropScience, 41, 698-701

[10]Doyle J J. 1990. Isolation of plant DNA from fresh tissue.Focus, 12, 13-15

[11]Evanno G, Regnaut S, Goudet J. 2005. Detecting the numberof clusters of individuals using the softwareSTRUCTURE: a simulation study. Molecular Ecology,14, 2611-2620

[12]Fehr W R, Caviness C E, Burmood D T, Pennington J S.1971. Stage of development descriptions for soybeans,Glycine max (L.) Merrill. Crop Science, 11, 929-931

[13]Flint-Garcia S A, Thuillet A C, Yu J, Pressoir G, Romero S M,Mitchell S E, Doebley J, Kresovich S, Goodman M M,Buckler E S. 2005. Maize association population: a highresolutionplatform for quantitative trait locusdissection. The Plant Journal, 44, 1054-1064

[14]Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, IshimotoM. 2005. Mapping of QTL associated with chillingtolerance during reproductive growth in soybean.Theoretical and Applied Genetics, 111, 851-861

[15]Githiri S M, Yang D, Khan N A, Xu D, Komatsuda T,Takahashi R. 2007. QTL analysis of low temperatureinducedbrowning in soybean seed coats. Journal ofHeredity, 98, 360-366

[16]Hou J F, Wang C L, Hong X J, Zhao J M, Xue C C, Guo N,Gai J Y, Xing H. 2011. Association analysis of vegetablesoybean quality traits with SSR markers. PlantBreeding, 130, 444-449

[17]Jun T H, Van K, Kim M Y, Lee S H, Walker D R. 2008.Association analysis using SSR markers to find QTLfor seed protein content in soybean. Euphytica, 162,179-191

[18]Kabelka E, Diers B, Fehr W, LeRoy A, Baianu I, You T,Neece D, Nelson R. 2004. Putative alleles for increasedyield from soybean plant introductions. Crop Science,44, 784-791

[19]Liu B, Abe J. 2010. QTL mapping for photoperiodinsensitivity of a Japanese soybean landraceSakamotowase. Journal of Heredity, 101, 251-256

[20]Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M,Ribaut J M, Cao M, Rong T. 2010. Joint linkage-linkagedisequilibrium mapping is a powerful approach todetecting quantitative trait loci underlying droughttolerance in maize. Proceedings of the NationalAcademy of Sciences of the United States of America,107, 19585-19590

[21]Mackay I, Powell W. 2007. Methods for linkagedisequilibrium mapping in crops. Trends Plant Science,12, 57-63

[22]Malo M F, Hinson K, Ray J D, Mankono J. 1995. Geneticcontrol of a long-juvenile trait in soybean. Crop Science,35, 1001-1006

[23]McBlain B A, Bernard R L. 1987. A new gene affecting thetime of flowering and maturity in soybeans. Journal ofHeredity, 78, 160-162

[24]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, AdlerF R, Lark K G. 1999. Genetics of soybean agronomictraits: I. Comparison of three related recombinant inbredpopulations. Crop Science, 39, 1642-1651

[25]Pritchard J K, Stephens M, Donnelly P. 2000. Inference ofpopulation structure using multilocus genotype data.Genetics, 155, 945-959

[26]Reinprecht Y, Poysa V W, Yu K, Rajcan I, Ablett G R, PaulsK P. 2006. Seed and agronomic QTL in low linolenicacid, lipoxygenase-free soybean (Glycine max (L.)Merrill) germplasm. Genome, 49, 1510-1527

[27]Specht J, Chase K, Markwell J, Germann M, Lark K, GraefG, Macrander M, Orf J, Chung J. 2001. Soybean responseto water. Crop Science, 41, 493-509

[28]Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. 2001.Mapping genetic loci for flowering time, maturity, andphotoperiod insensitivity in soybean. MolecularBreeding, 8, 25-35

[29]Wang D, Graef G L, Procopiuk A M, Diers W B. 2004.Identification of putative QTL that underlie yield ininterspecific soybean backcross populations.Theoretical and Applied Genetics, 108, 458-467

[30]Wang J, McClean P E, Lee R, Goos R J, Helms T. 2008.Association mapping of iron deficiency chlorosis lociin soybean (Glycine max L. Merr.) advanced breedinglines. Theoretical and Applied Genetics, 116, 777-787

[31]Watanabe S, Tajuddin T, Yamanaka N, Hayashi M, HaradaK. 2004. Analysis of QTLs for reproductive developmentand seed quality traits in soybean using recombinantinbred lines. Breeding Science, 54, 399-407

[32]Yamanaka N, Watanabe S, Toda K, Hayashi M, FuchigamiH, Takahashi R, Harada K. 2005. Fine mapping of theFT1 locus for soybean flowering time using a residualheterozygous line derived from a recombinant inbredline. Theoretical and Applied Genetics, 110, 634-639

[33]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu XL, Gai J Y, Chen S Y. 2004. QTL mapping of tenagronomic traits on the soybean (Glycine max L. Merr.)genetic map and their association with EST markers.Theoretical and Applied Genetics, 108, 1131-1139.
[1] Ming Ju, Guiting Li, Qiuzhen Tian, Hengchun Cao, Qin Ma, Yinghui Duan, Hui Guo, Zhanyou Zhang, Yingying Huang, Huili Wang, Haiyang Zhang, Hongmei Miao. Deletion of a 1,049 bp sequence from the 5´ UTR upstream of the SiHEC3 gene induces a seed non-shattering mutation in sesame  [J]. >Journal of Integrative Agriculture, 2024, 23(8): 2589-2604.
[2] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[3] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[4] Li Miao, Xiangyu Wang, Chao Yu, Chengyang Ye, Yanyan Yan, Huasen Wang.

What factors control plant height? [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1803-1824.

[5] Yingzhen Wang, Ying Wu, Xinlei Wang, Wangmei Ren, Qinyao Chen, Sijia Zhang, Feng Zhang, Yunzhi Lin, Junyang Yue, Yongsheng Liu.

Genome wide association analysis identifies candidate genes for fruit quality and yield in Actinidia eriantha  [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1929-1939.

[6] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[7] Zhimin Wu, Xiaozeng Han, Xu Chen, Xinchun Lu, Jun Yan, Wei Wang, Wenxiu Zou, Lei Yan.

Application of organic manure as a potential strategy to alleviate the limitation of microbial resources in soybean rhizospheric and bulk soils [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2065-2082.

[8] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[9] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

[10] Minghao Cai, Xuhui Li, Zhi Liang, Jie Wang, Delin Li, Zhipeng Yuan, Riliang Gu, Jianhua Wang, Li Li.

qSTA2-2, a novel QTL that contributes to seed starch synthesis in Zea mays L. [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1118-1133.

[11] Hongxiang Zheng, Yingying Dang, Xianmin Diao, Na Sui.

Molecular mechanisms of stress resistance in sorghum: Implications for crop improvement strategies [J]. >Journal of Integrative Agriculture, 2024, 23(3): 741-768.

[12] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[13] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[14] Mu Zeng, Binhu Wang, Lei Liu, Yalan Yang, Zhonglin Tang. Genome-wide association study identifies 12 new genetic loci associated with growth traits in pigs[J]. >Journal of Integrative Agriculture, 2024, 23(1): 217-227.
[15] Simin Liao, Zhibin Xu, Xiaoli Fan, Qiang Zhou, Xiaofeng Liu, Cheng Jiang, Liangen Chen, Dian Lin, Bo Feng, Tao Wang.

Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(1): 77-92.

No Suggested Reading articles found!