Please wait a minute...
Journal of Integrative Agriculture  2014, Vol. 13 Issue (6): 1303-1310    DOI: 10.1016/S2095-3119(13)60536-5
Special Issue: 线虫合辑Nematology
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular Characterization and Functional Analysis of a New Acid Phosphatase Gene (Ha-acp1) from Heterodera avenae
 LIU Yan-ke, HUANG Wen-kun, LONG Hai-bo, PENG Huan, HE Wen-ting , PENG De-liang
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  For sedentary endo-parasitic nematodes, parasitism genes encoding secretory protein expressed in the subventral glands cells always play an important role during the early parasitic process. A new acid phosphatase gene (Ha-acp1) expressed in the subventral glands of the cereal cyst nematode (Heterodera avenae) was cloned and the characteristics of the gene were analyzed. Results showed that the gene had a putative signal peptide for secretion and in situ hybridization showed that the transcripts of Ha-acp1 accumulated specifically in the subventral gland cells of H. avenae. Southern blot analysis suggested that Ha-acp1 belonged to a multigene family. RT-PCR analysis indicated that this transcription was strong at the pre-parasitic juveniles. Knocking down Ha-acp1 using RNA interference technology could reduce nematode infectivity by 50%, and suppress the development of cyst. Results indicated that Ha-acp1 could play an important role in destroying the defense system of host plants.

Abstract  For sedentary endo-parasitic nematodes, parasitism genes encoding secretory protein expressed in the subventral glands cells always play an important role during the early parasitic process. A new acid phosphatase gene (Ha-acp1) expressed in the subventral glands of the cereal cyst nematode (Heterodera avenae) was cloned and the characteristics of the gene were analyzed. Results showed that the gene had a putative signal peptide for secretion and in situ hybridization showed that the transcripts of Ha-acp1 accumulated specifically in the subventral gland cells of H. avenae. Southern blot analysis suggested that Ha-acp1 belonged to a multigene family. RT-PCR analysis indicated that this transcription was strong at the pre-parasitic juveniles. Knocking down Ha-acp1 using RNA interference technology could reduce nematode infectivity by 50%, and suppress the development of cyst. Results indicated that Ha-acp1 could play an important role in destroying the defense system of host plants.
Keywords:  Heterodera avenae       acid phosphatase       RNA interference  
Received: 23 April 2012   Accepted:
Fund: 

the fund of the National Basic Research Program of China (2013CB127502), the Special Fund for Agro-Scientific Research in the Public Interest, China (200903040) and the National Natural Science Foundation of China (31201493).

Corresponding Authors:  PENG De-liang, E-mail: dlpeng@ippcaas.cn     E-mail:  dlpeng@ippcaas.cn
About author:  LIU Yan-ke, E-mail: Shmilyake@126.com

Cite this article: 

LIU Yan-ke, HUANG Wen-kun, LONG Hai-bo, PENG Huan, HE Wen-ting , PENG De-liang. 2014. Molecular Characterization and Functional Analysis of a New Acid Phosphatase Gene (Ha-acp1) from Heterodera avenae. Journal of Integrative Agriculture, 13(6): 1303-1310.

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Molecular Biology, 215, 403-410

 Bakhetia M, Urwin P E, Atkinson H J. 2007. qPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. The American Phytopathological Society, 20, 306-312

 Bird A F. 1983. Changes in the dimensions of the oesophageal glands inroot-knot nematodes during the onset of parasitism. International Journal for Parasitology, 13, 343-348

 Bonfil D, Dolgin B, Mufradi I, Asido S. 2004. Bioassay to forecast cereal cyst nematode damage to wheat infields. Precision Agriculture, 5, 329-344

 Chen P S, Wang M Z, Peng D L. 1991. The preliminaly report for the discovery and identification of wheat cereal cyst nematode (Heterodera avenae Wollenweber) in China. Scientia Agricultura Sinica, 24, 89. (in Chinese)

Chen Q, Rehman S, Smant G, Jones J T. 2005. Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. The American Phytopathological Society, 18, 621-625

 Davis E L, Hussey R S, Baum T J, Bakker J, Schots A. 2000. Nematodeparasitism genes. Annual Review of Phytopathology, 38, 365-396

 Davis E L, Hussey R S, Baum T J. 2004. Getting to the roots of parasitism bynematodes. Trends in Parasitology, 20, 134-141

 Davis E L, Mitchum M G. 2005. Nematodes sophisticated parasites of legumes. Plant Physiology, 137, 1182-1188

 Ferris V, Faghihi J, Ireholm A, Ferris J. 1989. Two-dimensional protein patterns of cereal cyst nematodes. Phytopathology, 79, 927-933

 Gu X C, Peng D L, Peng H, Long H B, Wang G F, Huang W K, He Y Q. 2011. Molecular cloning and sequencing of cellulose binding protein gene (Ha-cbp-1) from the cereal cyst nematode (Heterodera avenae) Acta Phytopathologica Sinica, 3, 240-246

 Huang G Z, Gao B L, Maier T, Allen R, Davis E L, Baum T J, Hussey R S. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root- knot nematode Meloidogyne incognita. The American Phytopathological Society, 5, 376-381

 Ibrahim H M, Alkharouf N W, Meyer S L, Aly M A, Gamal El-Din Ael K, Hussein E H, Matthews B F. 2010. Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Experimental Parasitology, 127, 90-99

 Kiyotaka O, Norio S, Takeshi I, Isao K. 2003. SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C elegans. Development, 130, 3237-3248

 Ledger T N, Jaubert S, Bosselu T N, Abad P, Rosso M N. 2006. Characterization of a new β-1,4-endoglucanase gene from the root-knot nematode Meloidogyne incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases Gene, 382, 121-128

 Li H X, Liu Y E, Wei Z, Li M Q. 2012. The detection of Hetebodera avenae from the cereal field in autonomous regions of Tibet and XinJiang. Nematology Research in China, 4, 164-165 (in Chinese)

Lilley C, Atkinson H, Urwin P. 2005. Molecular aspects of cyst nematodes. Molecular Plant Pathology, 6, 577-588

 Long H B, Peng D L, Huang W K, Liu Y K, Peng H. 2012. Identification of a putative expansin gene expressed in the subventral glands of the cereal cyst nematode Heterodera avenae. Nematology, 14, 571-577

 Long H B, Peng D L, Huang W K, Peng H, Wang G F. 2013. Molecular characterization and functional analysis of two new β-1,4-endoglucanase genes (Ha-eng-2, Ha-eng-3) from the cereal cyst nematode Heterodera avenae Plant Pathology, 62, 953-960

 Maule A G, McVeigh P, Dalzell J J, Atkinson L, Mousley A, Marks N J. 2011. An eye on RNAi in nematode parasites. Trends in Parasitology, 27, 505-513

 Nicol J M, Elekcioglu I H, Bolat N, Rivoal R. 2007. The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approachesto its control. Communications in Agricultural and Applied Biological Sciences, 72, 677-686

 Nicol J, Rivoal R, Taylor S, Zaharieva M. 2003. Global importance of cyst (Heterodera spp.) and lesionnematodes (Pratylenchus spp.) on cereals: Distribution, yield loss, use of host resistance and integration of moleculartools. In: Cook R, Hunt D J, eds., Proceedings of the 4th International Congress of Nematology. 8-13 June 2002, Tenerife, Spain Nematology Monographs and Perspectives2. Leiden, Brill, The Netherlands. pp. 1-19

 Peng D L, Huang W K, Sun J H, Liu C J, Zhang H M. 2012. First report of cereal cyst nematode (Heterodera avenae) in Tianjin, China. Nematology Research in China, 4, 162- 163. (in Chinese)

Peng D L, Nicol J M, Li H M, Hou S Y, Li H X, Chen S L, Ma P, Li H L, Riley I T. 2009. Current knowledge of cereal cyst nematode (Heterodera avenae) on wheat in China. In: Cereal Cyst Nematodes: Status, Research and Outlook. CIMMYT Press, Ankara, Turkey. pp. 29-34

 Petersen T N, Brunak S, Von H G, Nielsen H. 2011. SIGNALP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785-786

 Rosso M N, Dubrana M P, Cimbolini N, Jaubert S, Abad P. 2005. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. The American Phytopathological Society, 18, 615-620

 Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, NY, USA. p. 545.

Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah E S. 2000. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Molecular Plant-Microbe Interactions, 13, 334- 341.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecularevolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596.

Tan J A, Chiew H, Michael G K Jones, John F N. 2012. Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Experimental Parasitology, 6557, 1-13

 Tetsunari F, Barbara G, Yan J, James D M. 2005. Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C elegans intestine. Developmental Biology, 279, 446-461

 Urwin P E, Lilley C J, Atkinson H J. 2002. Ingestion of double-strandedRNA by preparasitic juvenile cyst nematodes leads to RNAinterference. Molecular Plant-Microbe Interactions, 15, 747-752

 Wyss U, Zunke U. 1986. Observations on the behaviorof second stage juveniles of Heterodera schachtii inside hostroots. Revue de Nématologie, 9, 153-165

 Zhu P, Li X Q, Li Z L. 2012. Roles of phosphatases in pathogen infection: A review. Chinese Journal of Biotechnology, 28, 154-163. (in Chinese)
[1] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[2] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[3] YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2023, 22(2): 495-504.
[4] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[5] Yan Jia-hui, Jia Jian-ping, JIANG Li-ling, Peng De-liang, Liu Shi-ming, Hou Sheng-ying, YU Jing-wen, Li Hui-xia, Huang Wen-kun. Resistance of barley varieties to Heterodera avenae in the Qinghai–Tibet Plateau, China[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1401-1413.
[6] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[7] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[8] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[9] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[10] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[11] CHEN Chang-long, LIU Shu-sen, LIU Qian, NIU Jun-hai, LIU Pei, ZHAO Jian-long, LIU Zhi-yong, LI Hong-jie, JIAN Heng . Host status of Brachypodium distachyon to the cereal cyst nematode[J]. >Journal of Integrative Agriculture, 2018, 17(2): 381-388.
[12] LUO Shu-jie, KONG Ling-an, PENG Huan, HUANG Wen-kun, CUI Jiang-kuan, LIU Jing, QIAO Fen, JIAN Heng, PENG De-liang . Golden Promise barley (Hordeum vulgare) is a suitable candidate model host for investigation interaction with Heterodera avenae[J]. >Journal of Integrative Agriculture, 2017, 16(07): 1537-1546.
[13] ZHAO Lei, LIU Qun, ZHANG Ya-qing, CUI Qing-yu, LIANG Yuan-cun. Effect of acid phosphatase produced by Trichoderma asperellum Q1 on growth of Arabidopsis under salt stress[J]. >Journal of Integrative Agriculture, 2017, 16(06): 1341-1346.
[14] Shesh Kumari. Morphological and molecular characterizations of cereal cyst nematode Heterodera avenae Wollenweber, 1924 from the Czech Republic[J]. >Journal of Integrative Agriculture, 2017, 16(03): 532-539.
[15] CHEN Tai-yu, HOU Ji-xiang, LIN Yong-jun. Transcriptome datasets supply basic gene information for RNAi pest management and gene functional studies in Nephotettix cincticeps (Uhler)[J]. >Journal of Integrative Agriculture, 2016, 15(4): 840-847.
No Suggested Reading articles found!