Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 187-194    DOI: 10.1016/j.jia.2023.05.027
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants

Qi Zhang1, Wenqin Zhan1, Chao Li2, Ling Chang1, Yi Dong1#, Jiang Zhang1, 3# 

1 State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China

2 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China

3Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

植物介导的RNA干扰(RNAi)是一种很有前途的虫防治技术桃蚜Myzus persicae400多种寄主植物为食。油菜是世界上第二重要的油料作物。由于桃蚜繁殖能力生活史多变,对油菜生长造成了严重的危害。在本研究中,我们测试了转基因油菜植物介导RNAi对桃蚜抗性。通过体外喂食含有7个蚜虫关键基因的双链RNA (dsRNAs)的人工饲料,我们发现了一个编码分离缺陷蛋白6 (Par6的新基因是有效的RNAi靶点。组织和龄期表达分析表明,该基因在桃蚜胚期和成虫期均有高表达。接下来,我们通过农杆菌介导转化获得了表达dsPar6的转基因油菜植株,得9个独立的转基因事件。与野生型对照植物相比,表达dsPar6的转基因油菜株系对桃蚜表现出较显著的抗性。取食实验表明,将转基因油菜植株饲喂桃蚜后,MpPar6的表达水平和成活率显著降低,蚜虫繁殖力受损。此外,我们还发现转基因油菜对桃蚜的抗性水平与dsPar6表达水平呈正相关。我们的研究表明,转基因油菜表达dsPar6能够有效地保护其免受桃蚜的侵害。参与胚胎发育的基因可能是控制蚜虫和其他害虫的有效RNAi靶点。



Abstract  

Plant-mediated RNA interference (RNAi) has emerged as a promising technology for insect control.  The green peach aphid, Myzus persicae, feeds on over 400 species of host plants.  Brassica napus (rape) is the second most important oilseed crop worldwide.  Myzus persicae is highly reproductive and causes severe damage to the rape plants due to its quite flexible life cycle.  In this study, we tested the RNAi effects of transgenic rape plants on Mpersicae.  By in vitro feeding M. persicae with artificial diets containing double-stranded RNAs (dsRNAs) targeting seven aphid genes, we identified a new gene encoding the partitioning-defective protein 6 (Par6) as the most potent RNAi target.  Tissue- and stage-expression analysis of Par6 suggested this gene is highly expressed in the embryo and adult stage of Mpersicae.  We next generated transgenic rape plants expressing dsPar6 by Agrobacterium-mediated transformation and obtained nine independent transgenic lines.  Compared to wild-type control plants, transgenic rape lines expressing dsPar6 showed strong resistance to Mpersicae.  Feeding assays revealed that feeding transgenic rape plants to Mpersicae significantly decreased MpPar6 expression and survival rate and impaired fecundity.  Furthermore, we showed that the resistance levels to Mpersicae are positively correlated with dsPar6 expression levels in transgenic rape plants.  Our study demonstrates that transgenic rape plants expressing dsPar6 are efficiently protected from Mpersicae.  Interfering with the genes involved in embryo development could be the effective RNAi targets for controlling aphids and potentially other insect pests.

Keywords:  oilseed rape        pest control        aphid        double-stranded RNA        RNA interference   
Received: 01 February 2023   Accepted: 21 March 2023
Fund: 

This work was supported by the National Natural Science Foundation of China (32102297 and 32272634).  

About author:  #Correspondence DONG Yi, E-mail: 20180140@hubu.edu.cn; ZHANG Jiang, E-mail: zhangjiang@hubu.edu.cn

Cite this article: 

Qi Zhang, Wenqin Zhan, Chao Li, Ling Chang, Yi Dong, Jiang Zhang. 2024.

Host-induced silencing of MpPar6 confers Myzus persicae resistance in transgenic rape plants . Journal of Integrative Agriculture, 23(1): 187-194.

Abdollahzadeh J, Groenewald J, Coetzee M P A, Wingfield M J, Crous P W. 2020. Evolution of lifestyles in Capnodiales. Studies in Mycology, 95, 381–414.

Alvarez A E. 2007. Resistance Mechanisms of Solanum Species to Myzus Persicae. Wageningen University and Research, The Kingdom of the Netherlands. pp. 1–15.

Barbagallo S, Cocuzza G, Cravedi P, Komazaki S. 2007. IPM Case Studies: Tropical and Subtropical Fruit Trees. Commonwealth Agricultural Bureaux International, Italy. pp. 663–676.

Bass C, Puinean A M, Zimmer C T, Denholm I, Field L M, Foster S P, Gutbrod O, Nauen R, Slater R, Williamson M S. 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51, 41–51.

Bhatia V, Bhattacharya R. 2018. Host-mediated RNA interference targeting a cuticular protein gene impaired fecundity in the green peach aphid Myzus persicae. Pest Management Science, 74, 2059–2068.

Blackman R. 1978. Early development of the parthenogenetic egg in three species of aphids (Homoptera: Aphididae). International Journal of Insect Morphology and Embryology, 7, 33–44.

Buckley C E, St Johnston D. 2022. Apical-basal polarity and the control of epithelial form and function. Nature Reviews Molecular Cell Biology, 23, 559–577.

Capinera J L. 2001. Green Peach Aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). Entomology and Nematology Department, UF/IFAS Extension.

Chen Y Z, Singh A, Kaithakottil G G, Mathers T C, Gravino M, Mugford S T, Van O C, Swarbreck D, Hogenhout S A. 2020. An aphid RNA transcript migrates systemically within plants and is a virulence factor. Proceedings of the National Academy of Sciences of the United States of America, 117, 12763–12771.

Coleman A D, Wouters R H, Mugford S T, Hogenhout S A. 2015. Persistence and transgenerational effect of plant-mediated RNAi in aphids. Journal of Experimental Botany, 66, 541–548.

Cooper A M, Silver K, Zhang J, Park Y, Zhu K Y. 2019. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75, 18–28.

Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus D D. 2007. pORE: A modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Research, 16, 771–781.

Dong Y, Yang Y, Wang Z C, Wu M T, Fu J Q, Guo J, Chang L, Zhang J. 2020. Inaccessibility to double‐stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Management Science, 76, 3168–3176.

Drizou F, Bruce T J A, Ray R V, Graham N S. 2018. Infestation by Myzus persicae increases susceptibility of Brassica napus cv. “Canard” to Rhizoctonia solani AG 2–1. Frontiers in Plant Science, 9, 1903.

Fraser A G, Kamath R S, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330.

Gordon K H, Waterhouse P M. 2007. RNAi for insect-proof plants. Nature Biotechnology, 25, 1231–1232.

Hung Y H, Slotkin R K. 2021. The initiation of RNA interference (RNAi) in plants. Current Opinion in Plant Biology, 61, 102014.

Hutterer A, Betschinger J, Petronczki M, Knoblich J A. 2004. Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Developmental Cell, 6, 845–854.

Jayasinghe W H, Kim H, Nakada Y, Masuta C. 2021. A plant virus satellite RNA directly accelerates wing formation in its insect vector for spread. Nature Communications, 12, 7087.

Larson K C, Whitham T G. 1991. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia, 88, 15–21.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25, 402–410.

Macara I G. 2004. Par proteins: Partners in polarization. Current Biology, 14, R160–R162.

Neumüller R A, Richter C, Fischer A, Novatchkova M, Neumüller K G, Knoblich J A. 2011. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell, 8, 580–593.

Rispe C, Kutsukake M, Doublet V, Hudaverdian S, Legeai F, Simon J C, Tagu D, Fukatsu T. 2008. Large gene family expansion and variable selective pressures for cathepsin B in aphids. Molecular Biology and Evolution, 25, 5–17.

Sun Y, Sparks C, Jones H, Riley M, Francis F, Du W, Xia L. 2019. Silencing an essential gene involved in infestation and digestion in grain aphid through plant-mediated RNA interference generates aphid-resistant wheat plants. Plant Biotechnology Journal, 17, 852–854.

Symptomology A, Aphids B. 2010. The biology, epidemiology, and control of turnip mosaic virus. Horticultural Reviews, 14, 199.

Valenzuela I, Hoffmann A A. 2015. Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology, 54, 292–305.

Van E H, Eastop V, Hughes R, Way M. 1969. The ecology of Myzus persicae. Annual Review of Entomology, 14, 197–270.

Watts J L, Etemad-Moghadam B, Guo S, Boyd L, Draper B W, Mello C C, Priess J R, Kemphues K J. 1996. Par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. Development, 122, 3133–3140.

Yu X, Wang G, Huang S, Ma Y, Xia L. 2014. Engineering plants for aphid resistance: Current status and future perspectives. Theoretical and Applied Genetics, 127, 2065–2083.

Zhao Y, Sui X, Xu L, Liu G, Lu L, You M, Xie C, Li B, Ni Z, Liang R. 2018. Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest Management Science, 74, 2754–2760.


[1] GAO Yue, LUO Jian, SUN Yue, ZHANG Hua-wei, ZHANG Da-xia, LIU Feng, MU Wei, LI Bei-xing. Photosensitivity and a precise combination of size-dependent lambda-cyhalothrin microcapsules synergistically generate better insecticidal efficacy [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1477-1488.
[2] LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2345-2356.
[3] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[4] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[5] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[6] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
No Suggested Reading articles found!