Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (2): 326-335    DOI: 10.1016/S2095-3119(20)63391-3
Special Issue: 油料作物合辑Oil Crops
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions
LIU Li-feng1*, GAO Le1, 2*, ZHANG Li-xin1, CAI Yu-peng1, SONG Wen-wen1, CHEN Li1, YUAN Shan1, WU Ting-ting1, JIANG Bing-jun1, SUN Shi1, WU Cun-xiang1, HOU Wen-sheng1, HAN Tian-fu1
1 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2 College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

大豆是典型的短日照作物,对光周期敏感性决定大豆品种的适宜种植区域。在光周期调控的大豆开花途径中,开花抑制因子E1起主导作用。E1LaE1LbE1的同源基因,功能与E1类似。本研究利用RNA干扰(RNAi)技术在大豆品种自贡冬豆中同时沉默E1E1La/b基因。结果显示,与受体品种自贡冬豆相比,RNAi株系开花期和成熟期大幅度提前,光周期敏感性明显下降。在RNAi超早熟株系中,开花抑制基因GmFT4的表达水平显著下降,开花促进基因GmFT2a/GmFT5a的表达水平明显上升。生育期组鉴定结果显示,自贡冬豆的生育期组属于MG VIII为极晚熟品种,RNAi株系的生育期组为MG 000属超早熟新种质,可在中国最北部(53.5°N)的漠河市北极村种植。本研究验证E1E1La/b大豆开花期和成熟期的负调控作用创制出超早熟大豆新材料,为显著钝化大豆品种的光周期敏感性,大幅度缩短生育期,实现南方大豆种质资源在北方大豆主产区的有效利用,拓宽寒地区大豆的遗传基础提供了新的途径。

Abstract  Soybean (Glycine max (L.) Merr.), a typical short-day plant, is sensitive to photoperiod, which limits the geographical range for its cultivation.  In the flowering pathway regulated by photoperiod, E1, a flowering inhibitor in soybean, plays the dominant role in flowering time regulation.  Two E1 homologs, E1-like-a (E1La) and E1-like-b (E1Lb), play overlapping or redundant roles in conjunction with E1.  In the present study, E1 and E1La/b were simultaneously silenced via RNA interference (RNAi) in Zigongdongdou (ZGDD), an extremely late-flowering soybean landrace from southern China.  As a result, RNAi lines showed a much earlier-flowering phenotype and obvious photoperiod insensitivity compared with wild-type (WT) plants.  In RNAi transgenic plants, the expression levels of flowering inhibitor GmFT4 and flowering promoters GmFT2a/GmFT5a were significantly down- and up-regulated, respectively.  Further, the maturity group (MG) of the RNAi lines was reduced from WT ZGDD’s MG VIII (extremely late-maturity) to MG 000 (super-early maturity), which can even grow in the northernmost village of China located at a latitude of 53.5°N.  Our study confirms that E1 and E1La/b can negatively regulate flowering time in soybean.  The RNAi lines generated in this study, with early flowering and maturity traits, can serve as valuable materials and a technical foundation for breeding soybeans that are adapted to high-latitude short-season regions.
Keywords:  soybean       RNA interference       E1       E1La/b       flowering time  
Received: 28 May 2020   Accepted: 07 August 2020
This work was supported by grants from the National Key R&D Program of China (2017YFD0101400), the China Agriculture Research System of MOF and MARA (CARS-04) and the China Postdoctoral Science Foundation (2015M580154).
About author:  LIU Li-feng, E-mail:; GAO Le, E-mail:; Correspondence HAN Tian-fu, Tel: +86-10-82105875, Fax: +86-10-82108784, E-mail:; HOU Wen-sheng, E-mail: * These authors contributed equally to this study.

Cite this article: 

LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. 2022. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions. Journal of Integrative Agriculture, 21(2): 326-335.

Cai Y P, Chen L, Liu X J, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. 2018. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soybean. Plant Biotechnology Journal, 16, 176–185.
Cai Y P, Wang L W, Chen L, Wu T T, Liu L P, Sun S, Wu C X, Yao W W, Jiang B J, Yuan S, Han T F, Hou W S. 2020. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnology Journal, 18, 298–309.
Caldwell B E. 1973. Soybeans: Improvement, Production, and Uses. American Society of Agronomy, Wisconsin. pp. 166–168.
Chen L, Cai Y P, Liu X J, Yao W W, Guo C, Sun S, Wu C X, Jiang B J, Han T F, Hou W S. 2018. Improvement of soybean Agrobacterium-mediated transformation efficiency by adding glutamine and asparagine into the culture media. International Journal of Molecular Science, 19, 3039.
Chen L, Cai Y P, Qu M N, Wang L W, Sun H B, Jiang B J, Wu T T, Liu L P, Sun S, Wu C X, Yao W W, Yuan S, Han T F, Hou W S. 2020. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. Plant Cell and Environment, 43, 934–944.
Dong T T, Hu Z L, Deng L, Wang Y, Zhu M K, Zhang J L, Chen G P. 2013. A tomato MADS-Box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiology, 163, 1026–1036.
Gao L, Ding X N, Li K, Liao W L, Zhong Y K, Ren R, Liu Z T, Adhimoolam K, Zhi H J. 2015. Characterization of soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theoretical and Applied Genetics, 128, 1489–1505.
Gao L, Luo J Y, Ding X N, Wang T, Hu T, Song P W, Zhai R, Zhang H Y, Zhang K, Li K, Zhi H J. 2020. Soybean RNA interference lines silenced for eIF4E show broad potyvirus resistance. Molecular Plant Pathology, 21, 303–317.
Garner W W, Allard H A. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Journal of Agriculture Research, 18, 553–606.
Garner W W, Allard H A. 1923. Further studies in photoperiodism. The response of the plant to relative length of day and night. Journal of Agriculture Research, 23, 871–920. 
Garner W W, Allard H A. 1933. Comparative responses of long-day and short-day plants to relative length of day and night. Plant Physiology, 8, 347–356.
Fehr W R, Caviness C E, Burmood D T, Pennington J S. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Science, 11, 929–931.
Fei Z H, Wu C X, Sun H B, Hou W S, Zhang B S, Han T F. 2009. Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agronomica Sinica, 35, 1525–1531. (in Chinese)
Han J N, Guo B F, Guo Y, Zhang B, Wang X B, Qiu L J. 2019. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Frontiers in Plant Science, 10, 1446.
Han T F, Gai J Y, Qiu J X. 1998a. Comparative study on pre- and post-flowering photoperiod response in various ecotypes of soybeans. Soybean Science, 17, 129–134. (in Chinese)
Han T F, Gai J Y, Wang J L, Zhou D X. 1998b. Discovery of flowering reversion in soybean plants. Acta Agronomica Sinica, 24, 168–171. (in Chinese)
Jackson S D. 2009. Plant responses to photoperiod. New Phytologist, 181, 517–531.
Jia H C, Jiang B J, Wu C X, Hou W S, Sun S, Yan H R, Han T F. 2014. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS ONE, 9, e94139.
Jiang B J, Nan H Y, Gao Y F, Tang L L, Yue Y L, Lu S J, Ma L M, Cao D, Sun S, Wang J L, Wu C X, Yuan X H, Hou W S, Kong F J, Han T F, Liu B H. 2014. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE, 9, e106042.
Kong F J, Liu B H, Xia Z J, Sato S, Kim B M, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. 2010. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiology, 154, 1220–1231.
Li C, Li Y H, Li Y, Lu H, Hong H, Tian Y, Li H, Zhao T, Zhou X, Liu J, Zhou X, Jackson S A, Liu B, Qiu L J. 2020. A domestication-associated gene GmPRR3b regulates circadian clock and flowering time in soybean. Molecular Plant, 13, 745–759.
Liu B H, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J. 2008. Genetic redundancy in soybean photoresponses associated with duplication of the Phytochrome A gene. Genetics, 180, 995–1007.
Liu W, Jiang B J, Ma L M, Zhang S W, Zhai H, Xu X, Hou W S, Xia Z J, Wu C X, Sun S, Wu T T, Chen L, Han T F. 2018. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist, 217, 1335–1345.
Lu S J, Dong L D, Fang C, Liu S L, Kong L P, Chen Q, Chen L Y, Su T, Nan H Y, Zhang D, Zhang L, Wang Z J, Yang Y Q, Yu D Y, Liu X L, Yang Q Y, Lin X Y, Tang Y, Zhan X H, Yang X Q, et al. 2020. Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nature Genetics, 52, 428–436.
Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, Su T, Zhang F G, Li S C, Wang Z, Yuan X H, Cober E R, Weller J L, Liu B H, Hou X L, Tian Z X, et al. 2017. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nature Genetics, 49, 773–779.
Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Molecular Plant, 8, 1274–1284.
Meng Y Y, Li H Y, Wang Q, Liu B, Lin C T. 2013. Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. The Plant Cell, 25, 4405–4420.
Ni M, Ma W, Wang X F, Gao M J, Dai Y, Wei X L, Zhang L, Peng Y G, Chen S Y, Ding L Y, Tian Y, Li J, Wang H P, Wang X L, Xu G W, Guo W Z, Yang Y H, Wu Y D, Heuberger S, Tabashnik B E, et al. 2017. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnology Journal, 15, 1204–1213.
Song W W, Sun S, Ibrahim S E, Xu Z J, Wu H Y, Hu X G, Jia H C, Cheng Y X, Yang Z L, Jiang S B, Wu T T, Sinegovskii M, Sapey E, Nepomuceno A, Jiang B J, Hou W S, Sinegovskaya V, Wu C X, Gai J Y, Han T F. 2019. Standard cultivar selection and digital quantification for precise classification of maturity groups in soybean. Crop Science, 59, 1–10.
Sun H B, Jia Z, Cao D, Jiang B J, Wu C X, Hou W S, Liu Y K, Fei Z H, Zhang D Z, Han T F. 2011. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE, 6, e29238.
Thomas B, Vince P D. 1997. Photoperiodism in Plants. Academic Press, San Diego. pp. 3–28.
Wang C J, Sun S, Jin S J, Li W, Wu C X, Hou W S, Han T F. 2013a. Genetic diversity analysis of widely-planted soybean varieties from different decades and major production regions in China. Acta Agronomica Sinica, 39, 1917–1926. (in Chinese)
Wang C J, Sun S, Wu B M, Chang R Z, Han T F. 2013b. Pedigree analysis of the most planted soybean cultivars in China since 1940s. Chinese Journal of Oil Crop Sciences, 246–252. (in Chinese)
Wang L W, Sun S, Wu T T, Liu L P, Sun X G, Cai Y P, Li J C, Jia H C, Yuan S, Chen L, Jiang B J, Wu C X, Hou W S, Han T F. 2020. Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnology Journal, 18, 1869–1881.
Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K. 2009. Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 182, 1251–1262.
Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K, Harada K. 2011. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 188, 395–407.
Wu C X, Li J C, Sha A H, Zeng H Y, Sun S, Yang G M, Zhou X A, Chang R Z, Nian H, Han T F. 2012. Maturity group classification of check varieties in national soybean uniform trials of China. Acta Agronomica Sinica, 38, 1977–1987. (in Chinese)
Wu F Q, Fan C M, Zhang X M, Fu Y F. 2013. The phytochrome gene family in soybean and a dominant negative effect of a soybean PHYA transgene on endogenous Arabidopsis PHYA. Plant Cell Reports, 32, 1879–1890.
Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lü S, Wu H Y, Tabata S, Harada K. 2012. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proceedings of the National Academy of Sciences of the United States of America, 109, 2155–2164.
Xu M L, Yamagishi N, Zhao C, Takeshima R, Kasai M, Watanabe S, Kanazawa A, Yoshikawa N, Liu B H, Yamada T, Abe J. 2015. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiology, 168, 1735–1746.
Yang W Y, Wu T T, Zhang X Y, Song W W, Xu C L, Sun S, Hou W S, Jiang B J, Han T F, Wu C X. 2019. Critical photoperiod measurement of soybean genotype in different maturity groups. Crop Science, 59, 2055–2061.
Yue Y L, Liu N X, Jiang B J, Li M, Wang H J, Jiang Z, Pan H T, Xia Q J, Ma Q J, Han T F, Nian H. 2017. A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Molecular Plant, 10, 656–658.
Zamore P D, Tuschl T, Sharp P A, Bartel D P. 2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.
Zhai H, Lü S, Liang S, Wu H Y, Zhang X Z, Liu B H, Kong F J, Yuan X, Li J, Xia Z J. 2014a. GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE, 9, e89030.
Zhai H, Lü S, Wang Y Q, Chen X, Ren H X, Yang J Y, Cheng W, Zong C M, Gu H P, Qiu H M, Wu H G, Zhang X Z, Cui T T, Xia Z J. 2014b. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE, 9, e97636.
Zhai H, Lü S, Wu H Y, Zhang Y P, Zhang X Z, Yang J Y, Wang Y Y, Yang G, Qiu H M, Cui T T, Xia Z J. 2015. Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the E1 gene in control of photoperiodic flowering in soybean. PLoS ONE, 10, e0135909.
Zhang L X, Liu W, Tsegaw M, Xu X, Qi Y P, Sapey E, Liu L P, Wu T T, Sun S, Han T F. 2020. Principles and practices of the photo-thermal adaptability improvement in soybean. Journal of Integrative Agriculture, 19, 295–310.
Zhang Q Z, Li H Y, Li R, Hu R B, Fan C M, Chen F L, Wang Z H, Liu X, Fu Y F, Lin C T. 2008. Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proceedings of the National Academy of Sciences of the United States of America, 105, 21028–21033.
Zhang X Z, Zhai H, Wang Y Y, Tian X J, Zhang Y P, Wu H Y, Lü S X, Yang G, Li Y Q, Wang L, Hu B, Bu Q Y, Xia Z J. 2016. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Science Report, 6, 29548.
Zhu J H, Takeshima R, Harigai K, Xu M L, Kong F J, Liu B H, Kanazawa A, Yamada T, Abe J. 2019. Loss of function of the E1-Like-b gene associates with early flowering under long-day conditions in soybean. Frontiers in Plant Science, 9, 1867.

[1] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[2] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[3] GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan. Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean[J]. >Journal of Integrative Agriculture, 2023, 22(2): 434-446.
[4] YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2023, 22(2): 495-504.
[5] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[6] ZOU Jia-nan, ZHANG Zhan-guo, KANG Qing-lin, YU Si-yang, WANG Jie-qi, CHEN Lin, LIU Yan-ru, MA Chao, ZHU Rong-sheng, ZHU Yong-xu, DONG Xiao-hui, JIANG Hong-wei, WU Xiao-xia, WANG Nan-nan, HU Zhen-bang, QI Zhao-ming, LIU Chun-yan, CHEN Qing-shan, XIN Da-wei, WANG Jin-hui. Characterization of chromosome segment substitution lines reveals candidate genes associated with the nodule number in soybean[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2197-2210.
[7] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[8] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[9] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[10] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[11] CHEN Tai-yu, HOU Ji-xiang, LIN Yong-jun. Transcriptome datasets supply basic gene information for RNAi pest management and gene functional studies in Nephotettix cincticeps (Uhler)[J]. >Journal of Integrative Agriculture, 2016, 15(4): 840-847.
[12] ZHANG Jiao, XING Yan-ru, HOU Bo-feng, YUAN Zhu-ting, LI Yao, JIE Wen-cai, SUN Yang, LI Fei. Amplification and function analysis of N6-adenine-specific DNA methyltransferase gene in Nilaparvata lugens[J]. >Journal of Integrative Agriculture, 2016, 15(3): 591-599.
[13] CHENG Chun-zhen, YANG Jia-wei, YAN Hu-bin, BEI Xue-jun, ZHANG Yong-yan, LU Zhi-ming, ZHONG Guang-yan. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1767-1777.
[14] JIN Min-na, XUE Jian, YAO Yun , LIN Xin-da. Molecular Characterization and Functional Analysis of Krüppel-homolog 1 (Kr-h1) in the Brown Planthopper, Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2014, 13(9): 1972-1981.
[15] LIU Yan-ke, HUANG Wen-kun, LONG Hai-bo, PENG Huan, HE Wen-ting , PENG De-liang. Molecular Characterization and Functional Analysis of a New Acid Phosphatase Gene (Ha-acp1) from Heterodera avenae[J]. >Journal of Integrative Agriculture, 2014, 13(6): 1303-1310.
No Suggested Reading articles found!