Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 495-504    DOI: 10.1016/j.jia.2022.08.003
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)
YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong

College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【目的】脂肪酸结合蛋白(Fatty acid-binding protein)在细胞内以脂肪酸载体蛋白广泛参与脂肪酸的吸收、转运和代谢。它是昆虫脂质代谢中的关键蛋白,在昆虫的多种生理活动中发挥重要作用。研究黄野螟(Heortia vitessoides Moore)脂肪酸结合蛋白的时空表达特性及其在蜕皮发育中的生物学功能,为基于RNAi的黄野螟害虫防治技术提供理论基础。【方法】在黄野螟成虫转录组数据库中通过搜索关键词及在线比对获得黄野螟脂肪酸结合蛋白(HvFABP)的全序列,并对其进行生物信息学分析。以黄野螟不同龄期、不同的幼虫组织和成虫组织部位为材料提取RNA并反转录为cDNA,采用实时荧光定量PCR研究其时空表达特性;选取发育阶段相同的黄野螟幼虫进行饥饿胁迫、20E处理和RNA干扰探讨其生物学功能。【结果】本研究成功鉴定出一条黄野螟脂肪酸结合蛋白基因。同源性比对和系统发育树分析显示,HvFABP编码的氨基酸序列与鳞翅目昆虫的脂肪酸结合蛋白具有很高的相似性,在系统发育树上与家蚕的BmFABP1关系最密切。不同龄期和不同组织的实时荧光定量PCR结果表明HvFABP在各个龄期和组织中均有表达,其中在预蛹期到成虫期表达量较高,并在幼虫中肠和成虫翅膀的表达量最高。饥饿胁迫24h48hHvFABP表达被抑制,而在72h黄野螟进入预蛹期时表达量显著上调。20-hydroxyecdysone20E)处理24h48hHvFABP表达量均上调,表明20E可诱导HvFABP的表达。RNA干扰显著沉默了HvFABP,导致黄野螟发育延迟、蜕皮异常和出现致死表型,存活率显著下降。【结论】这些结果表明HvFABP在黄野螟的蜕皮过程中起关键作用,该基因被沉默后黄野螟无法完成蜕皮而导致死亡。【创新性】昆虫脂肪酸结合蛋白基因功能多种多样,在基因功能的探索上远不如哺乳动物。本研究首次对黄野螟脂肪酸结合蛋白基因进行时空表达分析和基因功能研究,丰富昆虫脂肪酸结合蛋白基因功能的探索,为黄野螟生物防治靶标基因的合理选择提供理论基础。



Abstract  

As intracellular fatty acid (FA) carriers, FA-binding proteins (FABPs) widely participate in the absorption, transport, and metabolism of FAs.  It is a key protein in insect lipid metabolism and plays an important role in various physiological activities of insects.  An FABP gene (HvFABP) was cloned from the transcriptional library of Heortia vitessoides Moore (Lepidoptera: Crambidae), and its expression patterns were determined using reverse transcription quantitative PCR (RT-qPCR).  Stage- and tissue-specific expression profiles indicated that HvFABP highly expressed from prepupal to adult stages and in larval midgut and adult wings.  HvFABP expression may be induced through starvation, mRNA expression was downregulated at 24 and 48 h and upregulated at 72 h after starvation.  Furthermore, 20-hydroxyecdysone can induce the upregulation of its expression.  RNA interference-mediated silencing of HvFABP significantly inhibited HvFABP expression, resulting in delayed development, abnormal molting or lethal phenotypes, and a significantly reduced survival rate.  These results indicate that HvFABP plays a key role in the molting of Hvitessoides

Keywords:  fatty acid-binding protein       starvation       20-hydroxyecdysone       RNA interference       Heortia vitessoides Moore  
Received: 17 November 2021   Accepted: 01 April 2022
Fund: 

This research was supported by the National Natural Science Foundation of China (32070012).


About author:  YE Qing-ya, E-mail: yeqingya@stu.scau.edu.cn; Correspondence LIN Tong, Tel: +86-20-85282217, E-mail: lintong@scau.edu.cn

Cite this article: 

YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. 2023. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae). Journal of Integrative Agriculture, 22(2): 495-504.

Akiduki G, Imanishi S. 2007. Establishment of a lipid accumulation model in an insect cell line. Archives of Insect Biochemistry and Physiology, 66, 109–121.
Caccia S, Grimaldi A, Casartelli M, Falabella P, Eguileor M D, Pennacchio F, Giordana B. 2012. Functional analysis of a fatty acid binding protein produced by Aphidius ervi teratocytes. Journal of Insect Physiology, 58, 621–627.
Cheng J, Chen J X, Lin T. 2017. De novo assembly and analysis of the Heortia vitessoides transcriptome via high-throughput Illumina sequencing. Journal of Asia-Pacific Entomology, 20, 1241–1248.
Cheng J, Wang C Y, Lyu Z H, Chen J X, Lin T. 2018. Identification and characterization of the catalase gene involved in resistance to thermal stress in Heortia vitessoides using RNA interference. Journal of Thermal Biology, 78, 114–121.
Duplus E, Glorian M, Forest C. 2000. Fatty acid regulation of gene transcription. Journal of Biological Chemistry, 275, 30749–30752.
Evans J D, Wheeler D E. 1999. Differential gene expression between developing queens and workers in the honey bee, Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America, 96, 5575–5580.
Falabella P, Perugino G, Caccialupi P, Riviello L, Varricchio P, Tranfaglia A, Rossi M, Malva C, Graziani F, Moracci M, Pennacchio F. 2005. A novel fatty acid binding protein produced by teratocytes of the aphid parasitoid Aphidius ervi. Insect Molecular Biology, 14, 195–205.
Fischer K, Fiedler K. 2001. Effects of larval starvation on adult life-history traits in the butterfly species Lycaena tityrus (Lepidoptera: Lycaenidae). Entomologia Generalis, 25, 249–254.
Furuhashi M, Hotamisligil G S. 2008. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nature Reviews Drug Discovery, 7, 489–503.
Gerstner J R, Vanderheyden W M, Shaw P J, Landry C F, Yin J C P. 2011a. Cytoplasmic to nuclear localization of fatty-acid binding protein correlates with specific forms of long-term memory in Drosophila. Communicative & Integrative Biology, 4, 623–626.
Gerstner J R, Vanderheyden W M, Shaw P J, Landry C F, Yin J C P. 2011b. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS ONE, 6, e15890.
Van Gilst M R, Hadjivassiliou H, Yamamoto K R. 2005. A Caenorhabditis elegans nutrient response system partially dependent on nuclear receptor NHR-49. Proceedings of the National Academy of Sciences of the United States of America, 102, 13496–13501.
Haunerland N H. 1994. Fatty acid binding protein in locust and mammalian muscle: Comparison of structure, function and regulation. Comparative Biochemistry and Physiology (Part B: Comparative Biochemistry), 109, 199–208.
Haunerland N H, Andolfatto P, Chisholm J M, Wang Z, Chen X. 1992. Fatty-acid-binding protein in locust flight muscle. Developmental changes of expression, concentration and intracellular distribution. European journal of biochemistry, 210, 1045–1051.
Haunerland N H, Chisholm J M. 1990. Fatty acid binding protein in flight muscle of the locust, Schistocerca Gregaria. Biochimica et Biophysica Acta, 1047, 233–238.
Haunerland N H, Spener F. 2004. Fatty acid-binding proteins - insights from genetic manipulations. Progress in Lipid Research, 43, 328–349.
Huang Z Q, Zhou D H, Gao G P, Zheng S C, Feng Q L, Liu L. 2012. Cloning and characterization of a midgut-specific fatty acid binding protein in Spodoptera litura. Archives of Insect Biochemistry and Physiology, 79, 1–17.
Liu R Z, Li X D, Godbout R. 2008. A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: Transcription in rat retina and testis. Genomics, 92, 436–445.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods, 25, 402–408.
Lyu Z H, Chen J X, Li Z X, Cheng J, Wang C Y, Lin T. 2019. Knockdown of beta-N-acetylglucosaminidase gene disrupts molting process in Heortia vitessoides moore. Archives of Insect Biochemistry and Physiology, 101, e21561.
Marcelino A M C, Smock R G, Gierasch L M. 2006. Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins-Structure Function and Bioinformatics, 63, 373–384.
McPhee C K, Baehrecke E H. 2009. Autophagy in Drosophila melanogaster. Biochimica et Biophysica Acta (Molecular Cell Research), 1793, 1452–1460.
Munyiri F N, Asano W, Shintani Y, Ishikawa Y. 2003. Threshold weight for starvation-triggered metamorphosis in the yellow-spotted longicorn beetle, Psacothea hilaris (Coleoptera: Cerambycidae). Applied Entomology and Zoology, 38, 509–515.
Munyiri F N, Ishikawa Y. 2005. Endocrine changes associated with the starvation-induced premature metamorphosis in the yellow-spotted longicorn beetle, Psacothea hilaris. General and Comparative Endocrinology, 144, 150–155.
Qiao H L, Lu P F, Chen J, Ma W S, Qin R M, Li X M. 2012. Antennal and behavioural responses of Heortia vitessoides females to host plant volatiles of Aquilaria sinensis. Entomologia Experimentalis et Applicata, 143, 269–279.
Rajapakse S, Qu D, Ahmed A S, Rickers-Haunerland J, Haunerland N H. 2019. Effects of FABP knockdown on flight performance of the desert locust, Schistocerca gregaria. Journal of Experimental Biology, 222, jeb203455.
Schaap F G, Vusse G J V D, Glatz J F C. 2002. Evolution of the family of intracellular lipid binding proteins in vertebrates. Molecular and Cellular Biochemistry, 239, 69–77.
Sim C, Denlinger D L. 2009. Transcription profiling and regulation of fat metabolism genes in diapausing adults of the mosquito Culex pipiens. Physiological Genomics, 39, 202–209.
Smith A F, Tsuchida K, Hanneman E, Suzuki T C, Wells M A. 1992. Isolation, characterization, and cDNA sequence of two fatty acid-binding proteins from the midgut of Manduca sexta larvae. The Journal of Biological Chemistry, 267, 380–384.
Storch J, Mcdermott L. 2009. Structural and functional analysis of fatty acid-binding proteins. Journal of Lipid Research, 50, S126–S131.
Tan Q Q, Liu W, Zhu F, Lei C L, Hahn D A, Wang X P. 2017. Describing the diapause-preparatory proteome of the beetle Colaphellus bowringi and identifying candidates affecting lipid accumulation using isobaric tags for mass spectrometry-based proteome quantification (iTRAQ). Frontiers in Physiology, 8, 251.
Terenius O, Papanicolaou A, Garbutt J S, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C J, Aymeric J L, Barthel A, Bebas P, Bitra K, Bravo A, Chevalieri F, Collinge D P, Crava C M, de Maagd R A, Duvic B, Erlandson M, Faye I, et al. 2011. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57, 231–245.
Wang C Y, Cheng J, Lyu Z H, Li Z X, Chen J X, Lin T. 2019. Chitin deacetylase 1 and 2 are indispensable for larval-pupal and pupal-adult molts in Heortia vitessoides (Lepidoptera: Crambidae). Comparative Biochemistry and Physiology (B: Biochemistry & Molecular Biology), 237, 110325.
Wen L, Gao G P, Huang Z Q, Zheng S C, Feng Q L, Liu L. 2020. Expression, regulation and binding affinity of fatty acid-binding protein 2 in Spodoptera litura. Journal of Integrative Agriculture, 19, 1492–1500.
Whyard S, Singh A D, Wong S. 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochemistry and Molecular Biology, 39, 824–832.
Wynant N, Verlinden H, Breugelmans B, Simonet G, Broeck J V. 2012. Tissue-dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 42, 911–917.
Xi Y, Pan P L, Ye Y X, Yu B, Zhang C X. 2014. Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecular Biology, 23, 695–705.
Yu X L, Kang M J, Liu L, Guo X Q, Xu B H. 2013. Identification and expression analysis of a putative fatty acid-binding protein gene in the Asian honeybee, Apis cerana cerana. Journal of Insect Science, 13, 101.
Zhang J, Haunerland N H. 1998. Transcriptional regulation of FABP expression in flight muscle of the desert locust, Schistocerca gregaria. Insect Biochemistry and Molecular Biology, 28, 683–691.
Ziegler R. 1991. Changes in lipid and carbohydrate metabolism during starvation in adult Manduca sexta. Journal of Comparative Physiology (B: Biochemical, Systemic, and Environmental Physiology), 161, 125–131.
Zimmerman A W, Veerkamp J H. 2002. New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences, 59, 1096–1116.
[1] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[2] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[3] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[4] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[5] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[6] ZHAO Xiao-ming, YANG Jia-peng, GOU Xin, LIU Wei-min, ZHANG Jian-zhen. Cuticular protein gene LmACP8 is involved in wing morphogenesis in the migratory locust, Locusta migratoria[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1596-1606.
[7] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[8] WEN Liang, GAO Gui-ping, HUANG Zhi-qiang, ZHENG Si-chun, FENG Qi-li, LIU Lin. Expression, regulation and binding affinity of fatty acid-binding protein 2 in Spodoptera litura[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1492-1500.
[9] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[10] MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang.
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 428-427.
[11] WANG Xue-qing, RUAN Wen-yuan, YI Ke-ke. Internal phosphate starvation signaling and external phosphate availability have no obvious effect on the accumulation of cadmium in rice[J]. >Journal of Integrative Agriculture, 2019, 18(9): 2153-2161.
[12] YANG Meng-ya, CHEN Jia-qi, TIAN He-yang, NI Chen-yang, XIAO Kai. TaARR1, a cytokinin response regulator gene in Triticum aestivum, is essential in plant N starvation tolerance via regulating the N acquisition and N assimilation[J]. >Journal of Integrative Agriculture, 2019, 18(12): 2691-2702.
[13] CHEN Tai-yu, HOU Ji-xiang, LIN Yong-jun. Transcriptome datasets supply basic gene information for RNAi pest management and gene functional studies in Nephotettix cincticeps (Uhler)[J]. >Journal of Integrative Agriculture, 2016, 15(4): 840-847.
[14] ZHANG Jiao, XING Yan-ru, HOU Bo-feng, YUAN Zhu-ting, LI Yao, JIE Wen-cai, SUN Yang, LI Fei. Amplification and function analysis of N6-adenine-specific DNA methyltransferase gene in Nilaparvata lugens[J]. >Journal of Integrative Agriculture, 2016, 15(3): 591-599.
[15] CHENG Chun-zhen, YANG Jia-wei, YAN Hu-bin, BEI Xue-jun, ZHANG Yong-yan, LU Zhi-ming, ZHONG Guang-yan. Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains[J]. >Journal of Integrative Agriculture, 2015, 14(9): 1767-1777.
No Suggested Reading articles found!