Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (5): 846-852    DOI: 10.1016/S2095-3119(13)60303-2
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Comparative Morphology and Morphometry of Six Biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) from China
 LI Jing-jing, TANG Qing-bo, BAI Run-e, LI Xiao-min, JIANG Jin-wei, ZHAI Qing , YAN Feng-ming
College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Morphology and morphometry of six biotypes (B, Q, Cv, ZHJ-1, ZHJ-2 and ZHJ-3) of Bemisia tabaci (Gennadius) from China on cotton plants were studied by using microscopes. Nymphal body sizes and characters were measured and observed, especially on the 4th instar (pupal case), including the vasiform orifice, operculum, lingula, length and thickness of anterior and posterior wax margins, width of thoracic tracheal combs. Adult characters of both sexes were investigated including the body size, compound eyes, antennal segments, vasiform orifice, hind tarsi and genitals. The results indicated that differences of some morphological characters or morphometrics were significant among the six biotypes of B. tabaci in China: (1) Pupal sizes of the exotic biotypes (B and Q) were significantly larger than the indigenous biotypes with the following order as B>Q>ZHJ-1>Cv>ZHJ-3>ZHJ-2; (2) for both male and female adults, sizes of all characters investigated in the invading biotypes (B and Q), especially B, were much larger than those of the indigenous ones.

Abstract  Morphology and morphometry of six biotypes (B, Q, Cv, ZHJ-1, ZHJ-2 and ZHJ-3) of Bemisia tabaci (Gennadius) from China on cotton plants were studied by using microscopes. Nymphal body sizes and characters were measured and observed, especially on the 4th instar (pupal case), including the vasiform orifice, operculum, lingula, length and thickness of anterior and posterior wax margins, width of thoracic tracheal combs. Adult characters of both sexes were investigated including the body size, compound eyes, antennal segments, vasiform orifice, hind tarsi and genitals. The results indicated that differences of some morphological characters or morphometrics were significant among the six biotypes of B. tabaci in China: (1) Pupal sizes of the exotic biotypes (B and Q) were significantly larger than the indigenous biotypes with the following order as B>Q>ZHJ-1>Cv>ZHJ-3>ZHJ-2; (2) for both male and female adults, sizes of all characters investigated in the invading biotypes (B and Q), especially B, were much larger than those of the indigenous ones.
Keywords:  Bemisia tabaci       biotype       morphology       morphometry       nymph       adult       size       wax margin       vasiform orifice       antennal segments  
Received: 06 September 2012   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (30571219) and the China National Key Project for New Trasngenic Biological Variety Development (2009ZX08012-007B).

Corresponding Authors:  Correspondence YAN Feng-ming, Tel: +86-371-63558172, Fax: +86-371-63558170, E-mail: fmyan@henau.edu.cn     E-mail:  fmyan@henau.edu.cn

Cite this article: 

LI Jing-jing, TANG Qing-bo, BAI Run-e, LI Xiao-min, JIANG Jin-wei, ZHAI Qing , YAN Feng-ming. 2013. Comparative Morphology and Morphometry of Six Biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. Journal of Integrative Agriculture, 12(5): 846-852.

[1]Bellows T S, Perring T M, Gill R J, Headrick D H. 1994.Description of a species of Bemisia (Homoptera:Aleyrodidae). Annals of Entomological Society ofAmerica, 87, 195-206

[2]Berlinger M J, Taylor R A, Lebiush-Mordechi S, ShalhevetS, Spharim I. 2002. Efficiency of insect exclusion screensfor preventing whitefly transmission of tomato yellowleaf curl virus of tomatoes in Israel. Bulletin ofEntomological Research, 92, 367-373

[3]Boykin L M, Shatters Jr R G, Rosell R C, McKenzie C L,Bagnall R A, de Barro P, Frohlich D R. 2007. Globalrelationships of Bemisia tabaci (Hemiptera:Aleyrodidae) revealed using Bayesian analysis ofmitochondrial COI DNA sequences. MolecularPhylogenetics and Evolution, 44, 1306-1319

[4]de Barro P J. 2012. The Bemisia tabaci species complex:questions to guide future research. Journal ofIntegrative Agriculture, 11, 187-196

[5]de Barro P J, Ahmed M Z. 2011. Genetic networking of theBemisia tabaci cryptic species complex reveals patternof biological invasions. PLoS One, 6, e25579.de Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011.Bemisia tabaci: a statement of species status. AnnualReview of Entomology, 56, 1-19

[6]Calvert L A, Cuervo M, Arroyave J A, Constantino L M,Bellotti A, Frohlich D. 2001. Morphological andmitochondrial DNA marker analyses of whiteflies(Homoptera: Aleyrodidae) colonizing cassava andbeans in Colombia. Annals of Entomological Societyof America, 94, 512-519

[7]Cervera M T, Cabezas J A, Simon B, Martinez-Zapater J M,Beitia F, Cenis J L. 2000. Genetic relationships amongbiotypes of Bemisia tabaci (Hemiptera: Aleyrodidae)based on AFLP analysis. Bulletin of EntomologicalResearch, 90, 391-396

[8]Chu D, Wan F H, Zhang Y J, Brown J K. 2010. Change in thebiotype composition of Bemisia tabaci in ShandongProvince of China from 2005 to 2008. EnvironmentalEntomology, 39, 1028-1036

[9]Dinsdale A, Cook L, Riginos C, Buckley Y M, Barro P D.2010. Refined global analysis of Bemisia tabaci(Hemiptera: Sternorrhyncha: Aleyrodoidea:Aleyrodidae) mitochondrial cytochrome oxidase 1 toidentify species level genetic boundaries. Annals ofEntomological Society of America, 103, 196-208

[10]Frohlich D R, Torres-Jerez I I, Bedford I D, Markham P G,Brown J K. 1999. A phylogeographical analysis of theBemisia tabaci species complex based on mitochondrialDNA markers. Molecular Ecology, 8, 1683-1691

[11]Gill R J, Brown J K. 2010. Systematics of Bemisia and Bemisiarelatives: can molecular techniques solve the Bemisiatabaci complex conundrum - a taxonomist’s viewpoint.In: Stansly P A, Naranjo S E, eds., Bemisia: Bionomicsand Management of a Global Pest. Springer,Netherlands. pp. 5-29

[12]Gueguen G, Rolain J M, Zchori-Fein E, Vavre F, Fleury F,Raoult D. 2009. Molecular detection and identificationof Rickettsia endosymbiont in different biotypes ofBemisia tabaci. Clinical Microbiology and Infection,15(suppl. 2), 271-272

[13]Guo X J, Rao Q, ZHANG F, Luo C, Zhang H Y, Gao X W.2012. Diversity and genetic differentiation of thewhitefly Bemisia tabaci species complex in China basedon mtDNA COI and cDNA-AFLP analysis. Journal ofIntegrative Agriculture, 11, 206-214

[14]Hsieh C H, Wang C H, Ko C C. 2007. Evidence from molecularmarkers and population genetic analyses suggestsrecent invasions of the Western North Pacific regionby biotypes B and Q of Bemisia tabaci (Gennadius).Environmental Entomology, 36, 952-961

[15]Khasdan V, Levin I, Rosner A, Morin S, Kontsedalov S,Maslenin L, Horowitz A R. 2005. DNA markers foridentifying biotypes B and Q of Bemisia tabaci (Hemiptera:Aleyrodidae) and studying population dynamics.Bulletin of Entomological Research, 95, 605-613

[16]Kirk A A, Lacey L A, Brown J K, Ciomperlik M A, Goolsby J A,Vacek D C, Wendel L E, Napompeth B. 2000. Variation inthe Bemisia tabaci s. l. species complex (Hemiptera:Aleyrodidae) and its natural enemies leading to successfulbiological control of Bemisia biotype B in the USA.Bulletin of Entomological Research, 90, 317-327

[17]Liu S S, de Barro P J, Xu J, Luan J B, Zang LS, Ruan Y M,Wan F H. 2007. Asymmetric mating interactions drivewidespread invasion and displacement in a whitefly.Science, 318, 1769-1772

[18]Liu S S, Colvin J, de Barro P J. 2012. Species concepts asapplied to the whitefly Bemisia tabaci systematics: howmany species are there? Journal of IntegrativeAgriculture, 11, 176-186

[19]Luo C. 2002. Studies on the host plants, biology andmolecular systematics of Bemisia tabaci (Gennadius).Ph D thesis, China Agricultural University, Beijing. p. 56.(in Chinese)

[20]McKenzie C L, Hodges G, Osborne L S, Byrne F J, Shatters Jr RG. 2009. Distribution of Bemisia tabaci (Hemiptera:Aleyrodidae) biotypes in Florida - investigating the Qinvasion. Journal of Economic Entomology, 102, 670-676

[21]Mound L A. 1963. Host-correlated variation in Bemisiatabaci (Gennadius) (Homoptera: Aleyrodidae).Proceedings of the Royal Entomological Society ofLondon (A), 38, 171-180

[22]Mound L A, Halsey S H. 1978. Whitefly of the World: aSystematic Catalogue of the Aleyrodidae (Homoptera)with Host Plant and Natural Enemy Data. BritishMuseum (Natural History), London. p. 340.

[23]Mouton L, Thierry M, Henri H, Baudin R, Gnankine O,Reynaud B, Zchori-Fein E, Becker N, Fleury F, DelatteH. 2012. Evidence of diversity and recombination inArsenophonus symbionts of the Bemisia tabaci speciescomplex. BMC Microbiology, 12(suppl. 1), S10.

[24]Papayiannis L C, Brown J K, Seraphides N A, Hadjistylli M,Ioannou N, Katis N I. 2009. A real-time PCR assay todifferentiate the B and Q biotypes of the Bemisia tabacicomplex in Cyprus. Bulletin of EntomologicalResearch, 99, 573-582

[25]Pascual S, Callejas C. 2004. Intra- and inter-specificcompetition between biotypes B and Q of Bemisiatabaci (Hemiptera: Aleyrodidae) from Spain. Bulletinof Entomological Research, 94, 369-375

[26]Rosell R C, Bedford I D, Frohlich D R, Gill R J, Brown J K,Markham P G. 1997. Analysis of morphological variationin distinct populations of Bemisia tabaci (Homoptera:Aleyrodidae). Annals of Entomological Society ofAmerica, 90, 575-589

[27]Shibuya T, Hirai N, Sakamoto Y, Komuro J. 2009. Effects ofmorphological characteristics of Cucumis sativusseedlings grown at different vapor pressure deficits oninitial colonization of Bemisia tabaci (Hemiptera:Aleyrodidae). Journal of Economic Entomology, 102,2265-2267

[28]Simon B, Cenis J L, Demichelis S, Rapisarda C, Caciagli P,Bosco D. 2003. Survey of Bemisia tabaci (Hemiptera:Aleyrodidae) biotypes in Italy with the description of anew biotype (T) from Euphorbia characias. Bulletinof Entomological Research, 93, 259-264

[29]Simons C, Frati F, Beckenbach A, Crespi B, Liu H, Floors P.1994. Evolution, weighting, and phylogenetic utility ofmitochondrial gene sequences and a compilation ofconserved polymerase chain reaction primers. Annalsof Entomological Society of America, 87, 651-701

[30]Stevens III T J, Kilmer R L, Glenn S J. 2000. An economiccomparison of biological and conventional controlstrategies for whiteflies (Homoptera: Aleyrodidae) ingreenhouse poinsettias. Journal of EconomicEntomology, 93, 623-629

[31]Sun D B, Xu J, Luan J B, Liu S S. 2011. Reproductiveincompatibility between the B and Q biotypes of thewhitefly Bemisia tabaci in China: genetic andbehavioural evidence. Bulletin of EntomologicalResearch, 101, 211-220

[32]Wan F H, Zhang G F, Liu S S, Luo C, Chu D, Zhang Y J,Zang L S, Jiu M, Lu Z C, Cui X H, et al. 2009. Invasivemechanism and management strategy of Bemisia tabaci(Gennadius) biotype B: progress report of 973 Programon invasive alien species in China. Science in China (CLife Science), 52, 88-95

[33]Xu J, de Barro P J, Liu S S. 2010. Reproductiveincompatibility among genetic groups of Bemisiatabaci supports the proposition that the whitefly is acryptic species complex. Bulletin of EntomologicalResearch, 100, 359-366

[34]Yan F M. 1990. A new method of making the slide of whitefly.Entomological Knowledge, 27, 241.Yan F M. 1991. Morphological variations in whiteflies.Journal of Beijing Agricultural College, 6, 68-71

[35](inChinese)Yan F M. 2001. Application of non-morphologicalcharacters in taxonomy of whiteflies (Homoptera:Aleyrodidae). Entomotaxonomia, 23, 107-113.
[1] GAO Yue, LUO Jian, SUN Yue, ZHANG Hua-wei, ZHANG Da-xia, LIU Feng, MU Wei, LI Bei-xing. Photosensitivity and a precise combination of size-dependent lambda-cyhalothrin microcapsules synergistically generate better insecticidal efficacy [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1477-1488.
[2] LYU Jing, WANG Chao, ZHAO Xun-wu, MIAO Er-yu, WANG Zhi-peng, XU Yuan, BAI Xiu-juan, BAO Jun. Effect of group size and regrouping on physiological stress and behavior of dairy calves[J]. >Journal of Integrative Agriculture, 2023, 22(3): 844-852.
[3] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[4] CHAO Kai-xiang, WU Cai-juan, LI Juan, WANG Wen-li, WANG Bao-tong, LI Qiang. Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat landrace Wudubaijian in multi-environment trials[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2305-2318.
[5] ZHU Kuan-yu, YAN Jia-qian, SHEN Yong, ZHANG Wei-yang, XU Yun-ji, WANG Zhi-qin, YANG Jian-chang. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. >Journal of Integrative Agriculture, 2022, 21(4): 947-963.
[6] HU Hong-lian, YANG Shu-qing, CHENG Meng, SONG Li-wen, XU Ming, GAO Min, YU Zhong-tang. Long-term effect of subacute ruminal acidosis on the morphology and function of rumen epithelial barrier in lactating goats[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3302-3313.
[7] LIU Hao, PENG Hua, LI Li-wang, DONG Xiao-xia. The mechanism and heterogeneity of environmental regulations’ impact on the technological progress of dairy farming[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3067-3081.
[8] ZHU Wei, QI Li-xia, WANG Rui-mei. The relationship between farm size and fertilizer use efficiency: Evidence from China[J]. >Journal of Integrative Agriculture, 2022, 21(1): 273-281.
[9] SHAO Ze-qiang, ZHENG Cong-cong, Johannes A. POSTMA, LU Wen-long, GAO Qiang, GAO Ying-zhi, ZHANG Jin-jing. Nitrogen acquisition, fixation and transfer in maize/alfalfa intercrops are increased through root contact and morphological responses to interspecies competition[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2240-2254.
[10] WANG Li-xia, WANG Jie, LUO Gao-ling, YUAN Xing-xing, GONG Dan, HU Liang-liang, WANG Su-hua, CHEN Hong-lin, CHEN Xin, CHENG Xu-zhen. Construction of a high-density adzuki bean genetic map and evaluation of its utility based on a QTL analysis of seed size[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1753-1761.
[11] LI Chuan-ming, XU Jian, LIU Qin, HAN Guang-jie, XU Bin, YANG Yi-zhong, LIU Xian-jin. Potential influence of carbohydrate and amino acid intake by adults on the population dynamics of Cnaphalocrocis medinalis (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1889-1897.
[12] LIU Yang, LI Yu-xiang, LI Yi-xiang, TIAN Zhong-wei, HU Jin-ling, Steve ADKINS, DAI Ting-bo. Changes of oxidative metabolism in the roots of wheat (Triticum aestivum L.) seedlings in response to elevated ammonium concentrations[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1216-1228.
[13] DIAO Shu-qi, XU Zhi-ting, YE Shao-pan, HUANG Shu-wen, TENG Jin-yan, YUAN Xiao-long, CHEN Zan-mou, ZHANG Hao, LI Jia-qi, ZHANG Zhe. Exploring the genetic features and signatures of selection in South China indigenous pigs[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1359-1371.
[14] HE Li-mei, JIANG Shan, CHEN Yu-chao, Kris A. G. WYCKHUYS, GE Shi-shuai, HE Wei, GAO Xi-wu, WU Kong-ming . Adult nutrition affects reproduction and flight performance of the invasive fall armyworm, Spodoptera frugiperda in China[J]. >Journal of Integrative Agriculture, 2021, 20(3): 715-726.
[15] WANG Yun-shu, GUO Peng-yu, ZHANG Jian-ling, XIE Qiao-li, SHEN Hui, HU Zong-li, CHEN Guo-ping. Overexpression of the MADS-box gene SlMBP21 alters leaf morphology and affects reproductive development in tomato[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3170-3185.
No Suggested Reading articles found!