Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Functional insights into the FW2.2-like gene family in Chinese jujube: Identification, characterization, and impact of ZjFWL10 variants on fruit size and plant height

Meiyu Li1,4*, Liyun Mao1*, Shuang Song2, Decang Kong3, Ming Cao3, Lijun Jiao5, Wenhao Bo1#, Xiaoming Pang1#

1 State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China

2 Coastal Agricultural Research Institute, Hebei Academy of Agriculture and Forestry Sciences / Hebei Saline and Alkali Land Greening Engineering Technology Center, Tangshan 063299, China

3 National Foundation for Improved Cultivars of Chinese Jujube, Cangzhou 061000, Hebei, China

4 Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan 467000 Henan, China

5 Shuangjing Forest Farm, Aohan Banner, Chifeng 028000, Neimenggu, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

FW2.2-like (FWL)基因家族已经在多种物种中进行了广泛研究,揭示了某些成员在器官发育中,特别是调控果实大小方面的保守功能。因此,对于研究基础比较薄弱的物种,包括中国枣在内,分析这一基因家族是筛选果实大小候选基因的有效途径。在本研究中,我们鉴定了20个ZjFWL基因,全面分析了它们的染色体分布、系统发育关系、基因结构、进化动态、表达模式及其启动子中的顺式作用元件。ZjFWL10序列的自然变异分析表明,其保守结构域中的7个碱基缺失与枣果实大小存在显著相关性。为了验证7个碱基缺失基因型的功能,我们在番茄中进行了异源过表达试验,获得了三个过表达株系。与野生型相比,过表达株系的果实大小显著减小,而株高显著增加。这表明该基因可能在枣的营养分配中发挥关键作用,最终影响果实大小。这些发现为揭示果实大小调控机制提供了重要的见解,并为针对枣果实大小的遗传改良提供了有价值的参考。



Abstract  

The FW2.2-like (FWL) gene family has been extensively investigated across various species, revealing conserved functions among certain members in organ development, especially in regulating fruit size. Therefore, for species with limited research foundations, such as Chinese jujube, analyzing this gene family serves as an effective strategy for identifying candidate genes for fruit size. In this study, twenty ZjFWL genes were identified. Their chromosomal distribution, phylogenetic relationships, gene structure, evolutionary dynamics, expression patterns, and cis-acting elements in their promoters were comprehensively analyzed. Natural variation analysis of the ZjFWL10 sequence revealed a significant correlation between a seven-base pair deletion in the conserved domain and the size of jujube fruits. To validate the functional implications of the seven-base pair deletion genotype, we conducted heterologous overexpression experiments in tomatoes, generating three overexpression lines. Comparative analysis with the wild-type revealed a significant reduction in fruit size, coupled with a notable increase in plant height, in the overexpressed lines. It is speculated that this gene may play a crucial role in the nutritional allocation of jujube, ultimately influencing fruit size. These findings provide crucial insights into the mechanisms governing fruit size regulation and serve as valuable references for genetic improvement efforts targeting jujube fruit size.

Keywords:  FWL       gene family        fruit size        Chinese jujube  
Online: 17 February 2025  
Fund: 

This work was financially supported by National Natural Science Foundation of China under Grant (NO.31800559), National Key Research and Development Program of China (2022YFD2200404), National XA Science and Technology innovation project (2022XACX1100), the grants of Science and Technology Major Project of Guangxi (‘Guike’AB16380060). The central government guides local science and technology development project "Germplasm Innovation of Xinjiang Characteristic Fruit Tree". Partly supported by the open funds of the National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops.

About author:  #Correspondence: Wenhao Bo and Xiaoming Pang; bowenhao@bjfu.edu.cn; xmpang@163.com *These authors contributed equally to this work.

Cite this article: 

Meiyu Li, Liyun Mao, Shuang Song, Decang Kong, Ming Cao, Lijun Jiao, Wenhao Bo, Xiaoming Pang. 2025. Functional insights into the FW2.2-like gene family in Chinese jujube: Identification, characterization, and impact of ZjFWL10 variants on fruit size and plant height. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.017

Alpert K B, Tanksley S D. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw 2.2: a major fruit weight quantitative trait locus in tomato. Proceedings of the National Academy of Sciences, 93, 15503-15507. https://doi.org/10.1073/pnas.93.26.15503.

Cabreira Cagliari C, Dias N d C, Bohn B, Fagundes D G d S, Margis Pinheiro M, Bodanese Zanettini M H, Cagliari A. 2018. Revising the PLAC8 gene family: from a central role in differentiation, proliferation, and apoptosis in mammals to a multifunctional role in plants. Genome, 61, 857-865. https://doi.org/10.1139/gen-2018-0035.

Chen K, Cong B, Wing R, Vrebalov J, Tanksley S D. 2007. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science, 318, 643-645. doi,10.1126/science.1148428.

Cong B, Liu J, Tanksley S D. 2002. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proceedings of the National Academy of Sciences, 99, 13606-13611. https://doi.org/10.1073/pnas.172520999.

Dahan Y, Rosenfeld R, Zadiranov V, Irihimovitch V. 2010. A proposed conserved role for an avocado fw2. 2-like gene as a negative regulator of fruit cell division. Planta, 232, 663-676. https://doi.org/10.1007/s00425-010-1200-3.

De Franceschi P, Stegmeir T, Cabrera A, Van Der Knaap E, Rosyara U, Sebolt A, Dondini L, Dirlewanger E, Quero-Garcia J, Campoy J A. 2013. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Molecular Breeding, 32, 311-326. https://doi.org/10.1007/s11032-013-9872-6.

Finn R D, Clements J, Eddy S R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39, W29-W37. https://doi.org/10.1093/nar/gkr367.

Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E v d, Cong B, Liu J, Meller J, Elber R, Alpert K B. 2000. fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 289, 85-88. doi,10.1126/science.289.5476.85.

Galaviz-Hernandez C, Stagg C, De Ridder G, Tanaka T S, Ko M S, Schlessinger D, Nagaraja R. 2003. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 309, 81-89. https://doi.org/10.1016/S0378-1119(03)00508-0.

Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, Duncan K E, Howard R J, Hou Z, Simmons C R. 2010. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. The Plant Cell, 22, 1057-1073. https://doi.org/10.1105/tpc.109.073676.

Guo M, Simmons C R. 2011. Cell number counts–the fw2. 2 and CNR genes and implications for controlling plant fruit and organ size. Plant Science, 181, 1-7. https://doi.org/10.1016/j.plantsci.2011.03.010.

Jarambasa T, Regon P, Jyoti S Y, Gupta D, Panda S K, Tanti B. 2023. Genome-wide identification and expression analysis of the Pisum sativum (L.) APETALA2/ethylene-responsive factor (AP2/ERF) gene family reveals functions in drought and cold stresses. Genetica, 151, 225-239. https://doi.org/10.1007/s10709-023-00190-0.

Jia T, Bin Z, Luo S, LI X, Bin W, Jiang L. 2016. Cloning, localization and expression analysis of two fw2. 2-like genes in small-and large-fruited pear species. Journal of Integrative Agriculture, 15, 282-294. https://doi.org/10.1016/S2095-3119(15)61075-9.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. 2009. Circos: an information aesthetic for comparative genomics. Genome Research, 19, 1639-1645. doi,10.1101/gr.092759.109.

Kuang C, Li J, Liu H, Liu J, Sun X, Zhu X, Hua W. 2020. Genome-wide identification and evolutionary analysis of the fruit-weight 2.2-like gene family in polyploid oilseed rape (Brassica napus L.). DNA and Cell Biology, 39, 766-782. https://doi.org/10.1089/dna.2019.5036.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547. doi,10.1093/molbev/msy096.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325-327. https://doi.org/10.1093/nar/30.1.325.

Li Z, He C. 2015. Physalis floridana Cell Number Regulator1 encodes a cell membrane-anchored modulator of cell cycle and negatively controls fruit size. Journal of Experimental Botany, 66, 257-270. https://doi.org/10.1093/jxb/eru415.

Libault M, Stacey G. 2010. Evolution of FW2. 2-like (FWL) and PLAC8 genes in eukaryotes. Plant signaling & behavior, 5, 1226-1228. https://doi.org/10.4161/psb.5.10.12808.

Liu C, Xie T, Chen C, Luan A, Long J, Li C, Ding Y, He Y. 2017. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics, 18, 1-16. https://doi.org/10.1186/s12864-017-3896-y.

Liu J, Cong B, Tanksley S D. 2003. Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2. 2 controls fruit size. Plant Physiology, 132, 292-299. doi,https://doi.org/10.1104/pp.102.018143.

Liu M, Zhao J, Cai Q, Liu G, Wang J, Zhao Z, Liu P, Dai L, Yan G, Wang W. 2014. The complex jujube genome provides insights into fruit tree biology. Nature Communications, 5, 5315. https://doi.org/10.1038/ncomms6315.

Lozano R, Hamblin M T, Prochnik S, Jannink J L. 2015. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 16, 1-14. https://doi.org/10.1186/s12864-015-1554-9.

Pereira L, Sapkota M, Alonge M, Zheng Y, Zhang Y, Razifard H, Taitano N K, Schatz M C, Fernie A R, Wang Y. 2021. Natural genetic diversity in tomato flavor genes. Frontiers in plant science, 12, 642828. https://doi.org/10.3389/fpls.2021.642828.

Pu X, Tian J, Li J, Wen Y. 2023. Genome-Wide Identification and Expression Analysis of the fw2. 2-like Gene Family in Pear. Horticulturae, 9, 429. https://doi.org/10.3390/horticulturae9040429.

Ran C, Zhang Y, Chang F, Yang X, Liu Y, Wang Q, Zhu W. 2023. Genome-Wide Analyses of SlFWL Family Genes and Their Expression Profiles under Cold, Heat, Salt and Drought Stress in Tomato. International Journal of Molecular Sciences, 24, 11783. https://doi.org/10.3390/ijms241411783.

Snouffer A, Kraus C, van der Knaap E. 2020. The shape of things to come: ovate family proteins regulate plant organ shape. Current Opinion in Plant Biology, 53, 98-105. https://doi.org/10.1016/j.pbi.2019.10.005.

Sun H J, Uchii S, Watanabe S, Ezura H. 2006. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant and Cell Physiology, 47, 426-431. https://doi.org/10.1093/pcp/pci251.

Tepe F B, Ekinci R, Kadakal Ç, NİZAMLIOĞLU N M. 2022. A review: The physical, nutritional, bioactive properties and health benefits of jujube fruit. Celal Bayar University Journal of Science, 18, 67-75. doi,10.1007/s11130-020-00821-3.

Titirică I, Roman I A, Nicola C, Sturzeanu M, Iurea E, Botu M, Sestras R E, Pop R, Militaru M, Ercisli S. 2023. The main morphological characteristics and chemical components of fruits and the possibilities of their improvement in raspberry breeding. Horticulturae, 9, 50. doi,https://doi.org/10.3390/horticulturae9010050.

Wang B, He M, Li C, Wang L, Meng H. 2020. Microstructure and biomechanical characterisation of jujube branches. Biosystems Engineering, 194, 165-176. doi,https://doi.org/10.1016/j.biosystemseng.2020.04.004.

Wang Y, Tang H, DeBarry J D, Tan X, Li J, Wang X, Lee T h, Jin H, Marler B, Guo H. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49-e49. https://doi.org/10.1093/nar/gkr1293.

Xu J, Xiong W, Cao B, Yan T, Luo T, Fan T, Luo M. 2013. Molecular characterization and functional analysis of “fruit-weight2. 2-like” gene family in rice. Planta, 238, 643-655. https://doi.org/10.1007/s00425-013-1916-y.

Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. 2023. Genome-wide identification, characterization, and expression profile of NBS-LRR gene family in sweet orange (Citrus sinensis). Gene, 854, 147117. https://doi.org/10.1016/j.gene.2022.147117.

Zanor M I, Osorio S, Nunes Nesi A, Carrari F, Lohse M, Usadel B r, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L. 2009. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 150, 1204-1218. https://doi.org/10.1104/pp.109.136598.

Zhang S, Chen Z, Feng L, Zhi Z, Liu Y, Zhang M, Yue H, Zhu G, Gao F. 2024. The Transcriptional Regulatory Mechanisms Exploration of Jujube Biological Traits through Multi-omics Analysis. Forests, 15, 395. https://doi.org/10.3390/f15020395.

Zhang Y, Sun X, Vidyarthi S K, Zhang R. 2021. Active components and antioxidant activity of thirty-seven varieties of Chinese jujube fruits (Ziziphus jujuba Mill.). International Journal of Food Properties, 24, 1479-1494. https://doi.org/10.1080/10942912.2021.1977656. 

No related articles found!
No Suggested Reading articles found!