Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (8): 1213-1221    DOI: 10.1016/S1671-2927(11)60112-0
PHYSIOLOGY & BIOCHEMISTRY · TILLAGE · CULTIVATION Advanced Online Publication | Current Issue | Archive | Adv Search |
Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.
Department of Botany, Aligarh Muslim University
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Sodium alginate is a polysaccharide that is largely obtained from the brown algae (Sargassum sp.). It has been used as awonderful growth promoting substance in its depolymerized form for various plants. The aim of this study was to find outthe effects of various concentrations of ?-irradiated sodium alginate (ISA), viz., deionized water (control, T0), 20 (T1),40 (T2), 60 (T3), 80 (T4), and 100 ppm (T5) on the agricultural performance of Catharanthus roseus L. (Rosea) in terms ofgrowth attributes, photosynthesis, physiological activities, and alkaloid production. The present work revealed that ISAapplied as leaf-sprays at concentrations from 20 to 100 ppm might improve growth, photosynthesis, physiological activities,and alkaloid production in C. roseus L. significantly. Of the various ISA concentrations, 80 ppm proved to be the best onecompared to other concentrations applied.
Keywords:  γ-irradiated sodium alginate      plant growth promoter      chlorophyll and carotenoids content      carbonic anhydrase and nitrate reductase activities      growth attributes      photosynthesis  
Received: 02 August 2010   Accepted:
CLC Number:  null  
Corresponding Authors:  Correspondence Mohd Naeem, Ph D, Mobile: +91-9719341207, E-mail: naeem_phd@yahoo.co.in   

Cite this article: 

Mohd Idrees, Mohd Naeem, Masidur Alam, Tariq Aftab, Nadeem Hashmi, Mohd Masroor Akhtar Khan, Moinuddin , Lalit Varshney. 2011. Utilizing the γ-Irradiated Sodium Alginate as a Plant Growth Promoter for Enhancing the Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.. Journal of Integrative Agriculture, 10(8): 1213-1221.

[1]      Afaq S H, Tajuddin, Siddiqui M M H. 1994. Standardization ofHerbal Drugs. Publication Division, Aligarh MuslimUniversity, Aligarh, India.Akimoto C, Aoyagi H, Tanaka H. 1999. Endogenous elicitor-likeeffect of alginate on physiological activities of plant cells.Applied Microbiology and Biotechnology, 52, 429-436.
[2]      Anthony J, Gabapathy A, Coothan K V, Streenivasan P P, ArjunaR, Palaninathan V. 2007. Beneficial effects of sulphatedpolysaccharides from Saragassum wightii againstmitochondrial alterations induced by cyclosporine A in ratkidney. Molecular Nutrition and Food Research, 51, 1413-1422.
[3]      Dwivedi R S, Randhawa N S. 1974. Evaluation of rapid test forthe hidden hunger of zinc in plants. Plant and Soil, 40, 445-451.
[4]      Hien N Q, Nagasawa N, Tham L X, Yoshii F, Dang V H, MitomoH, Makuuchi K, Kume T. 2000. Growth promotion of plantswith depolymerised alginates by irradiation. Radiation Physicsand Chemistry, 59, 97-101.
[5]      Hu X, Jiang X, Hwang H, Liu S, Guan H. 2004. Promotiveeffects of alginate-derived oligosaccharide on maize seedgermination. Journal of Applied Phycology, 16, 73-76.
[6]      Idrees M, Naeem M, Khan M M A. 2010. The superiority of cv.‘rosea’ over cv. ‘alba’ of periwinkle (Catharanthus roseusL.) in alkaloid production and other physiological attributes.Turkish Journal of Biology, 32, 81-88.
[7]      Jamsheer M K. 2010. Response of beetroot (Beta vulgaris L.) tothe application of phosphorus and gamma-irradiated sodiumalginate. MSc thesis, Aligarh Muslim University, Aligarh,India.Jaworski E J. 1971. Nitrate reductase assay in intact plant tissues.Biochemical and Biophysical Research Communications, 43,1247-1279.
[8]      Khan Z H, Khan M M A, Aftab T, Idrees M, Naeem M,Moinuddin. 2011. Influence of alginate oligosaccharides ongrowth, yield and alkaloid production of opium poppy(Papaver somniferum L.). Frontiers of Agriculture in China,5, 122-127.
[9]      Kume T, Nagasawa N, Yoshii F. 2002. Utilization ofcarbohydrates by radiation processing. Radiation Physicsand Chemistry, 63, 625-627.
[10]   Lichtenthaler H K, Buschmann C. 2001. Chlorophylls andcarotenoids: measurement and characterization by UV-VISspectroscopy. In: Wrolstad R E, ed., Current Protocols inFood Analytical Chemistry. John Wiley and Sons, New York.pp. F4.3.1-F4.3.8.Luan L Q, Ha V T, Nagasawa N, Kume T, Yoshii F, NakanishiT M. 2005. Biological effect of irradiated chitosan on plantsin vitro. Biotechnology and Applied Biochemistry, 41, 49-57.
[11]   Luan L Q, Hien N Q, Nagasawa N, Kume T, Yoshii F, NakanishiT M. 2003. Biological effect of radiation-degraded alginateon flower plants in tissue culture. Biotechnology and AppliedBiochemistry, 38, 283-288.
[12]   Luan L Q, Nagasawa N, Ha V T T, Hien N Q, Nakanishi T M.2009. Enhancement of plant growth stimulation activity ofirradiated alginate by fractionation. Radiation Physics andChemistry, 78, 796-799.
[13]   Mollah M Z I, Khan M A, Khan R A. 2009. Effect of gammairradiated sodium alginate on red amaranth (Amaranthuscruentus L.) as growth promoter. Radiation Physics andChemistry, 78, 61-64.
[14]   Nagasawa N, Mitomo H, Yoshii F, Kume T. 2000. Rradiationinduced degradation of sodium alginate. Polymer Degradationand Stability, 69, 279-285.
[15]   Natsume M, Kamao Y, Hirayan M, Adachi J. 1994. Isolationand characterization of alginate derived oligosaccharides withroot growth promoting activities. Carbohydrate Research,258, 187-197.
[16]   Nwafor S V, Akah P A, Okali C O. 2001. Potential of plantproducts as anticancer agents. Journal of Natural Remedy, 1,75-87.
[17]   Qureshi A H. 2010. Effect of nitrogen and gamma-irradiatedsodium alginate on the efficiency of beetroot (Beta vulgarisL.). MSc thesis, Aligarh Muslim University, Aligarh, India.Sarfaraz A, Naeem M, Nasir S, Idrees M, Aftab T, Hashmi N,Khan M M A, Moinuddin, Varshney L. 2011. An evaluationof the effects of irradiated sodium alginate on the growth,physiological activities and essential oil production of fennel(Foeniculum vulgare Mill.). Journal of Medicinal PlantResearch, 5, 15-21.
[18]   Singh D V, Maithy A, Verma R K, Gupta M M, Kumar S. 2000.Simultaneous determination of Catharanthus alkaloids usingreserved phase high performance liquid chromatography.Journal of Liquid Chromatography & Related Technologies, 23, 601-607.
[19]   Thama L X, Nagasawab N, Matsuhashib S, Ishiokab N S, Itob T,Kume T. 2001. Effect of radiation-degraded chitosan on plantsstressed with vanadium. Radiation Physics and Chemistry,61, 171-175.
[20]   Tomoda Y, Umemura K, Adachi T. 1994. Promotion of barleyroot elongation under hypoxic conditions by alginate lyaselysate(A.L.L.). Bioscience, Biotechnology and Biochemistry,58, 203-203.
[21]   Watson D J. 1947. Comparative physiological studies on thegrowth of the field crops. Annals of Botany, 11, 42-76.
[22] Yonemoto Y, Tanaka H, Yamashita T, Kitabatake N, Ishida Y,Kimura A, Murata K. 1993. Promotion of germination andshoot elongation of some plants by alginate oilgomersprepared with bacterial alginate lyase. Journal ofFermentation and Bioengineering, 75, 68-70.
[1] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[2] XU Yan-xia, ZHANG Jing, WAN Zi-yun, HUANG Shan-xia, DI Hao-chen, HE Ying, JIN Song-heng. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2397-2411.
[3] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[4] JIANG Hui, GAO Ming-wei, CHEN Ying, ZHANG Chao, WANG Jia-bao, CHAI Qi-chao, WANG Yong-cui, ZHENG Jin-xiu, WANG Xiu-li, ZHAO Jun-sheng. Effect of the L-D1 alleles on leaf morphology, canopy structure and photosynthetic productivity in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(1): 108-119.
[5] WU Han-yu, QIAO Mei-yu, ZHANG Wang-feng, WANG Ke-ru, LI Shao-kun, JIANG Chuang-dao. Systemic regulation of photosynthetic function in maize plants at graining stage under vertically heterogeneous light environment[J]. >Journal of Integrative Agriculture, 2022, 21(3): 666-676.
[6] WANG Yi-bo, HUANG Rui-dong, ZHOU Yu-fei. Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.)[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1250-1265.
[7] MA Ming-yang, LIU Yang, ZHANG Yao-wen, QIN Wei-long, WANG Zhi-min, ZHANG Ying-hua, LU Cong-ming, LU Qing-tao. In situ measurements of winter wheat diurnal changes in photosynthesis and environmental factors reveal new insight into photosynthesis improvement by super-high-yield cultivation[J]. >Journal of Integrative Agriculture, 2021, 20(2): 527-539.
[8] Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng. Crop photosynthetic response to light quality and light intensity[J]. >Journal of Integrative Agriculture, 2021, 20(1): 4-23.
[9] JIA Teng-jiao, LI Jing-jing, WANG Li-feng, CAO Yan-yong, MA Juan, WANG Hao, ZHANG Deng-feng, LI Hui-yong. Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2177-2187.
[10] YE Yu-xiu, WEN Zhang-rong, YANG Huan, LU Wei-ping, LU Da-lei. Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2216-2228.
[11] ZOU Jie, ZHOU Cheng-bo, XU Hong, CHENG Rui-feng, YANG Qi-chang, LI Tao. The effect of artificial solar spectrum on growth of cucumber and lettuce under controlled environment[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2027-2034.
[12] WEN Bing-xiao, Sajad Hussain, YANG Jia-yue, WANG Shan, ZHANG Yi, QIN Si-si, XU Mei, YANG Wen-yu, LIU Wei-guo. Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2439-2450.
[13] RAO Gang-shun, Umair Ashraf, KONG Lei-lei, MO Zhao-wen, XIAO Li-zhong, ZHONG Ke-you, Fahd Rasul, TANG Xiang-ru.
Low soil temperature and drought stress conditions at flowering stage affect physiology and pollen traits of rice
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1859-1870.
[14] WU Ya-wei, LI Qiang, JIN Rong, CHEN Wei, LIU Xiao-lin, KONG Fan-lei, KE Yong-pei, SHI Hai-chun, YUAN Ji-chao. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different lownitrogen tolerances[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1246-1256.
[15] ZHANG Peng-peng, XU Shou-zhen, ZHANG Guo-juan, PU Xiao-zhen, WANG Jin, ZHANG Wang-feng. Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China[J]. >Journal of Integrative Agriculture, 2019, 18(5): 1103-1119.
No Suggested Reading articles found!